精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 ,焦点 为坐标原点,直线(不垂直轴)过点且与抛物线交于两点,直线的斜率之积为.

(1)求抛物线的方程;

(2)若为线段的中点,射线交抛物线于点,求证: .

【答案】(1;(2)证明见解析.

【解析】试题分析:(1)设经过焦点的直线方程为,联立直线的方程和抛物线的方程,写出韦达定理,根据斜率之积等于求出的值,由此求得抛物线方程;(2)利用(1)求得点的坐标,利用直线的方程求出点的坐标,两者横坐标的比值大于,得证.

试题解析:

直线过点且与抛物线交于两点,

,直线(不垂直轴)的方程可设为

直线的斜率之积为

,得

,化为

其中

,抛物线

2)证明:设为线段的中点,

直线的斜率为

直线的方程为代入抛物线的方程,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)设

若函数处的切线过点,求的值;

时,若函数上没有零点,求的取值范围.

2)设函数,且,求证: 时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,圆的圆心在圆的内部,且直线被圆所截得的弦长为.点为圆上异于的任意一点,直线轴交于点,直线轴交于点.

(1)求圆的方程

(2)求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点焦点在轴上离心率且椭圆经过点过椭圆的左焦点且不与坐标轴垂直的直线交椭圆两点

(1)求椭圆的方程

(2)设线段的垂直平分线与轴交于点求△的面积的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若在区间上的最小值为,求的取值范围;

(2)若对任意,且恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:直线与圆有两个交点;命题: .

1)若为真命题,求实数的取值范围;

2)若为真命题, 为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.

(1)求曲线的方程;

(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;

(3)记的面积为的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.

(1)求抛物线的方程;

(2)过点作直线交抛物线于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面,四边形是直角梯形,其中. .

1)求异面直线所成角的大小;

2)若平面内有一经过点的曲线,该曲线上的任一动点都满足所成角的大小恰等于所成角.试判断曲线的形状并说明理由;

3)在平面内,设点是(2)题中的曲线在直角梯形内部(包括边界)的一段曲线上的动点,其中为曲线的交点.为圆心,为半径的圆分别与梯形的边交于两点.点在曲线段上运动时,试求圆半径的范围及的范围.

查看答案和解析>>

同步练习册答案