【题目】已知抛物线
:
,焦点
,
为坐标原点,直线
(不垂直
轴)过点
且与抛物线
交于
两点,直线
与
的斜率之积为
.
(1)求抛物线
的方程;
(2)若
为线段
的中点,射线
交抛物线
于点
,求证:
.
科目:高中数学 来源: 题型:
【题目】已知圆
经过点
,圆
的圆心在圆
的内部,且直线
被圆
所截得的弦长为
.点
为圆
上异于
的任意一点,直线
与
轴交于点
,直线
与
轴交于点
.
(1)求圆
的方程;
(2)求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,焦点在
轴上,离心率
,且椭圆
经过点
,过椭圆
的左焦点
且不与坐标轴垂直的直线交椭圆
于
,
两点.
(1)求椭圆
的方程;
(2)设线段
的垂直平分线与
轴交于点
,求△
的面积
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
与圆
相切,且与圆
相内切,记圆心
的轨迹为曲线
;设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
两个不同的点.
(1)求曲线
的方程;
(2)试探究
和
的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记
的面积为
,
的面积为
,令
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的顶点在坐标原点
,对称轴为
轴,焦点为
,抛物线上一点
的横坐标为2,且
.
(1)求抛物线的方程;
(2)过点
作直线
交抛物线于
两点,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
平面
,四边形
是直角梯形,其中
,
.
,
.
![]()
(1)求异面直线
与
所成角的大小;
(2)若平面
内有一经过点
的曲线
,该曲线上的任一动点
都满足
与
所成角的大小恰等于
与
所成角.试判断曲线
的形状并说明理由;
(3)在平面
内,设点
是(2)题中的曲线
在直角梯形
内部(包括边界)的一段曲线
上的动点,其中
为曲线
和
的交点.以
为圆心,
为半径
的圆分别与梯形的边
、
交于
、
两点.当
点在曲线段
上运动时,试求圆半径
的范围及
的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com