【题目】在一个半径为1的半球材料中截取两个高度均为
的圆柱,其轴截面如图所示.设两个圆柱体积之和为
.
(1)求
的表达式,并写出
的取值范围;
(2)求两个圆柱体积之和
的最大值.
科目:高中数学 来源: 题型:
【题目】若二次函数f(x)=4x2-2(t-2)x-2t2-t+1在区间[-1,1]内至少存在一个值m,使得f(m)>0,则实数t的取值范围( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m件,且当月销完,你估计哪个月份盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的定义域为R,且满足
(1)f(1)=3
(2)对于任意的
,总有![]()
(3)对于任意的![]()
(I)求f(0)及f(-1)的值
(II)求证:函数y=f(x)-1为奇函数
(III)若
,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点A(-1,0),8(0,3),圆心C在第一象限,线段AB的垂直平分线交圆C 于点D,E,且DE =2
.
(1)求直线DE的方程;
(2)求圆C的方程;
(3)过点(0,4)作圆C的切线,求切线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( ) ![]()
A.(kπ﹣
,kπ+
,),k∈z
B.(2kπ﹣
,2kπ+
),k∈z
C.(k﹣
,k+
),k∈z
D.(
,2k+
),k∈z
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)是这样定义的:对于任意整数m,当实数x满足不等式|x﹣m|<
时,有f(x)=m.
(1)求函数f(x)的定义域D,并画出它在x∈D∩[0,3]上的图象;
(2)若数列an=2+10(
)n , 记Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的两个焦点分别为
,
,且点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)设椭圆
的左顶点为
,过点
的直线
与椭圆
相交于异于
的不同两点
,求
的面积
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com