精英家教网 > 高中数学 > 题目详情
16、若函数f(x)=(a-2)x2+(a-1)x+3是偶函数,则f(x)的增区间是
(-∞,0](也可以填(-∞,0))
分析:由已知中函数f(x)=(a-2)x2+(a-1)x+3是偶函数,根据偶函数的性质,我们可以求出满足条件的a的值,进而求出函数的解析式,根据二次函数的性质,即可得到答案.
解答:解:∵函数f(x)=(a-2)x2+(a-1)x+3是偶函数,
∴a-1=0
∴f(x)=-x2+3,其图象是开口方向朝下,以y轴为对称轴的抛物线
故f(x)的增区间(-∞,0]
故答案为:(-∞,0](也可以填(-∞,0))
点评:本题考查的知识点是奇偶性与单调性的综合,其中根据已知条件结合偶函数的性质,得到a值,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、有以下命题:
(1)若函数f(x),g(x)在R上是增函数,则f(x)+g(x)在R上也是增函数;
(2)若f(x)在R上是增函数,g(x)在R上是减函数,则g(x)-f(x)在R上是减函数;
(3)若函数f(x)在区间[a,b]上递增,在(b,c)上也递增,则f(x)在[a,c)上递增;
(4)若奇函数f(x)在(0,+∞)上递减,则f(x)在(-∞,0)上也递减.
其中正确命题的个数为
3
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2-2x-a没有零点,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+2x+a-1没有零点,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•泰安一模)已知非零向量
a
b
满足:|
a
|=2|
b
|,若函数f(x)=
1
3
x3+
1
2
|
a
|x2+
a
b
x在R上有极值,设向量
a
b
的夹角为θ,则cosθ的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|4x-x2|-a的零点个数为2,则a的范围是
{a|a=0或a>4}
{a|a=0或a>4}

查看答案和解析>>

同步练习册答案