精英家教网 > 高中数学 > 题目详情
设实数x,y同时满足条件:4x2-9y2=36,且xy<0.
(1)求函数y=f(x)的解析式和定义域;
(2)判断函数y=f(x)的奇偶性;
(3)若方程f(x)=k(x-1)(k∈R)恰有两个不同的实数根,求k的取值范围.
分析:(1)由4x2-9y2=36,知y=±
2
3
x2-9
,由4x2-36=9y2>0,知x>3,x<-3,由此能求出函数y=f(x)的定义域.
(2)当x<-3有-x>3,f(-x)=-
2
3
(-x)2-9
=-
2
3
x2-9
=-f(x),同理,当x>3时,有f(-x)=-f(x).由此能够推导出f(x)为定义域上的奇函数.
(3)联立方程组
4x2-9y2=36
y=k(x-1)
可得,(4-9k2)x2+18k2x-(9k2+36)=0,由此分类讨论能够求出k的取值范围.
解答:解:(1)∵4x2-9y2=36,
y=±
2
3
x2-9

∵xy<0,∴y≠0.
又∵4x2-36=9y2>0,
∴x>3,x<-3.
∵xy<0,
f(x)=
2
3
x2-9
(x<-3)
-
2
3
x2-9
(x>3)

函数y=f(x)的定义域为集合D={x∈R|x>3,x<-3}.
(2)当x<-3有-x>3,f(-x)=-
2
3
(-x)2-9
=-
2
3
x2-9
=-f(x),
同理,当x>3时,有f(-x)=-f(x).
任设x∈D,有f(-x)=-f(x),
∴f(x)为定义域上的奇函数.
(3)联立方程组
4x2-9y2=36
y=k(x-1)

可得,(4-9k2)x2+18k2x-(9k2+36)=0,
(Ⅰ)当k2=
4
9
时,即k=±
2
3
时,方程只有唯一解,与题意不符;
k≠±
2
3

(Ⅱ)当k2
4
9
时,即方程为一个一元二次方程,
要使方程有两个相异实数根,
则△=(18k22+4×(4-9k2)(9k2+36)>0.
解之得  -
2
2
<k<
2
2
,但由于函数f(x)的图象在第二、四象限.
故直线的斜率k<0,
综上可知-
2
2
<k<-
2
3
-
2
3
<k<0
点评:本题考查函数的性质和综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设实数x,y同时满足条件:4x2-9y2=36,且xy<0.
(1)求函数y=f(x)的解析式和定义域;
(2)判断函数y=f(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设实数x,y同时满足条件:4x2-9y2=36,且xy<0.
(1)求函数y=f(x)的解析式和定义域;
(2)判断函数y=f(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省重点中学高考数学一轮复习课时练精品:5-8 (解析版) 题型:解答题

设实数x,y同时满足条件:4x2-9y2=36,且xy<0.
(1)求函数y=f(x)的解析式和定义域;
(2)判断函数y=f(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年江苏省无锡市滨湖区辅仁高中高一(下)期初数学试卷(2月份)(解析版) 题型:解答题

设实数x,y同时满足条件:4x2-9y2=36,且xy<0.
(1)求函数y=f(x)的解析式和定义域;
(2)判断函数y=f(x)的奇偶性;
(3)若方程f(x)=k(x-1)(k∈R)恰有两个不同的实数根,求k的取值范围.

查看答案和解析>>

同步练习册答案