精英家教网 > 高中数学 > 题目详情
设函数f(x)=,给定数列{an},其中a1=a,an+1=f(an)(n∈N*).
(1)若{an}为常数数列,求a的值;
(2)当a≠0时,探究{+2}能否是等比数列?若是,求出{an}的通项公式;若不是,说明理由;
(3)设bn=3nan,数列{bn}的前n项和为Sn,当a=1时,求证:Sn>4-(n+2)(n-1
【答案】分析:(1)由于a1=a,{an}为常数数列,得知a=f(a),将其代入f(x)=,从而求出a的值;
(2)根据an+1=f(an)取倒数化简得,再考虑首项是否为0分类讨论,它是否是等比数列.
(3)根据(2)得a=1时,它是等比数列,从而求出an的通项公式,并放缩,得
,令右式=Tn,再用错位相减法化简右式得Tn=,从而得证.
解答:解:(1)若{an}为常数数列,则an=a,由an+1=f(an),得a=f(a),(1分)
f(x)=,∴,即a=2a(a+1)解得:a=0或
(2)∵f(x)=,∴an+1=f(an)=
当a1=a≠0时,an≠0,


+2=+2,…(6分)
∴①当a=-时,由(1)知,∴不是等比数列.…(7分)
②当时,,∴是以2为公比,以为首项的等比数列,…(8分)
,∴     …(9分)
(3)当a=1时,,…(10分)

…(11分)

,②
由①-②得:
=
,(13分),
所以…(14分)
点评:此题考查等比数列的判断,关键在于其首项是否为0,比值是否为常数.同时还考查了放缩法及数列求和的错位相减法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lg(x2+ax-a-1),给出下列命题:
(1)f(x)有最小值; 
(2)当a=0时,f(x)的值域为R;
(3)当a>0时,f(x)在区间[2,+∞)上有单调性;
(4)若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是a≥-4.
则其中正确的命题是
(2)(3)
(2)(3)
.(写上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)设函数f(x)=sin(?x+?),其中?>0,-
π
2
<?<
π
2
,给出四个论段:
①它的周期是π 
②它的图象关于直线x=
π
12
对称  
③它的图象关于点(
π
3
,0)
对称
④在区间(-
π
6
,0)
上是增函数,
以其中两个论段作为条件,另两个论段作为结论,写出一个你认为正确的命题
①②→③④或①③→②④
①②→③④或①③→②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)设函数f(x)的定义域为R,若存在常数 M>0,使|f(x)|≤M|x|对一切实数 x均成立,则f(x)为β函数.现给出如下4个函数:(1)f(x)=0;f(x)=x2;f(x)=
2
(sinx+cosx);f(x)=
x
x2+x+1
.其中是β函数的序号是
(1)(4)
(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点,且有如下零点存在定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b<0,那么,函数y=f(x)在区间(a,b)内有零点.给出下列命题:
①若函数y=f(x)有反函数,则f(x)有且仅有一个零点;
②函数f(x)=2x3-3x+1有3个零点;
③函数y=
x26
和y=|log2x|的图象的交点有且只有一个;
④设函数f(x)对x∈R都满足f(3+x)=f(3-x),且函数f(x)恰有6个不同的零点,则这6个零点的和为18;
其中所有正确命题的序号为
②④
②④
.(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈M,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f(x)=lgx为(0,+∞)上的m(m>0)高调函数;
③函数f(x)=sin2x为R上的π高调函数;
④若函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞).
其中正确命题的序号是
①②③④
①②③④
(写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案