精英家教网 > 高中数学 > 题目详情

. 已知函数,其中

(1)当时,把函数写成分段函数的形式;

(2)当时,求在区间[1,3]上的最值;

(3)设,函数在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围

(用表示).

 

【答案】

 

解:(1)时,……………………..4分

(2)结合图像,

所以函数在区间上最大值为18,最小值为4………..8分

   (也可写出单调区间,写出可能的最值点及最值)

 

 

 

 

(3)当时,函数的图像如右,要使得在开区间有最大值又有最小值,则最小值一定在处取得,最大值在处取得;,在区间内,函数值为,所以,而在区间内函数值为,所以……………..12分

 

时,函数的图像如右,要使得在开区间有最大值又有最小值,则最大值一定在处取得,最小值在处取得,,在内函数值为,所以,在区间内,函数值为时,

 

 

,所以……………..15分

 

综上所述,时,

时,.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。

   (1)求c的值;

   (2)设的两个极值点,且的取值范围;

   (3)在(2)的条件下,求b的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

⒗ 已知函数,其中为实数,且处取得的极值为

⑴求的表达式;

⑵若处的切线方程。

  

查看答案和解析>>

科目:高中数学 来源:2013-2014学年北京市西城区高三上学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数,其中是自然对数的底数,.

函数的单调区间

时,求函数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题

已知函数(其中是实数常数,

(1)若,函数的图像关于点(—1,3)成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届陕西省高二上学期期末考试理科数学试卷(解析版) 题型:选择题

已知函数(其中)的图象如图(上)所示,则函数的图象是(  )                                                    

 

查看答案和解析>>

同步练习册答案