精英家教网 > 高中数学 > 题目详情
已知△ABC的三个内角A、B、C所对的边分别为a,b,c,向量
m
=(4,-1),
n
=(cos2
A
2
,cos2A),且
m
n
=
7
2

(1)求角A的大小;
(2)若a=
3
,试判断b×c取得最大值时△ABC形状.
分析:(1)利用已知计算
m
n
,然后令它等于
7
2
,可求A的值.
(2)利用余弦定理,求得bc的关系,再用基本不等式和最大值,判定三角形的形状.
解答:解:(1)由
m
 =(4,-1) , 
n
=(cos
A
2
,cos2A)

m
n
=4cos2
A
2
-cos2A
(1分)
=4-
1+cosA
2
-(2cos2A-1)
=-2cos2A+2cosA+3(3分)
又因为
m
n
=
7
2
.所以-2cos2A+2cosA+3 =
7
2

解得cosA=
1
2
(5分)
∵<A<π,∴A=
π
3
(6分)
(2)在△ABC中a2=b2+c2-2bccosA且a=
3

∴(
3
)2=b2+c2-bc.(8分)
∵b2+c2≥2bc,∴3≥2bc-bc
即 bc≤3当且仅当  b=c=
3
时,bc取得最大值,(10分)
又由(1)知  A=60°∴B=C=60°
故 bc取得最大值时,△ABC为等边三角形.(12分)
点评:本题考查平面向量数量积,余弦定理,三角函数的基本关系式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点的A、B、C及平面内一点P满足
PA
+
PB
+
PC
=
AB
,下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A、B、C及平面内一点P,若
PA
+
PB
+
PC
=
AB
,则点P与△ABC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点ABC及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ满足:
AB
+
AC
=λ
AP
,则λ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知△ABC的三个顶点坐标分别为A(1,3)、B(3,1)、C(-1,0),求BC边上的高所在的直线方程.
(2)过椭圆
x2
16
+
y2
4
=1
内一点M(2,1)引一条弦,使得弦被M点平分,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A,B,C及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ 满足:
AB
+
AC
AP
,则λ的值为(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步练习册答案