精英家教网 > 高中数学 > 题目详情
ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=
(1)求证:平面ACD⊥平面PAC;
(2)求异面直线PC与BD所成角的余弦值;
(3)设二面角A-PC-B的大小为θ,试求tanθ的值.

【答案】分析:(1)由已知中,PA⊥面ABCD,结合面面垂直的判定定理,我们易得平面ACD⊥平面PAC;
(2)令AC与BD交点为O,PA的中点为E,连接OE,则OE∥PC,则直线PC与BD所成角等于直线OE与BD所成角,解三角形OEB,即可得到答案.
(3)A作AE⊥PC交PC于E,过E作EF⊥PC交PB于F,连接AE.则二面角A-PC-B的平面角为∠AEF,解三角形AEF,即可得到答案.
解答:证明:(1)∵PA⊥面ABCD,
PA?平面PAC
∴平面ACD⊥平面PAC;
解:(2)令AC与BD交点为O,PA的中点为E,连接OE,BE如图所示:

∵O为BD的中点,则EO=PC==,且OE∥PC
又∵PA⊥面ABCD,且PA=AD=2,AB=1,AC=
∴OB=BD=,BE=
∴|cos∠EOB|==
即异面直线PC与BD所成角的余弦值为
(3)过A作AE⊥PC交PC于E,过E作EF⊥PC交PB于F,连接AE.则二面角A-PC-B的平面角为∠AEF即∠AEF=θ.
在Rt△APC中,PC=,∴
在△PBC中,PB=,BC=2,∴
在Rt△PEF中,,∴
在△PAF中,PF=,∴AF=1,
在△AEF中,,∴
点评:本题考查的知识点是平面与平面垂直的判定,异面直线及其所成的角,二面角的平面角及求示,其中求二面角,关键是要找到二面角的平面角,将空间问题转化为一个平面解三角形的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图在四棱锥P-ABCD中,底面四边形ABCD为平行四边形,PA⊥面ABCD,PC•BD=0,PA=AB=2.∠BAD=60°.
(1)证明:面PAC⊥面PBD.
(2)求C到面PBD的距离.
(3)求面PBC与面PAD的二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求直线AM与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD.
(1)若底面ABCD为菱形,∠DAB=60°,PA=PD,求证:PB⊥AD;
(2)若底面ABCD为平行四边形,E为PC的中点,在DE上取点F,过AP和点F的平面与平面BDE的交线为FG,求证:AP∥FG.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点O,焦点在x轴上的椭圆E过点(1,
3
2
),离心率为
1
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)直线x+y+1=0与椭圆E相交于A、B(B在A上方)两点,问是否存在直线l,使l与椭圆相交于C、D(C在D上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案