精英家教网 > 高中数学 > 题目详情
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

【答案】分析:(Ⅰ)取BC中点O,连接AO,取B1C1中点O1,以0为原点,OB,OO1 ,OA 的方向为x、y、z轴的正方向建立空间直角坐标系,用坐标表示向量,验证=0,,即可证明AB1⊥平面A1BD;
(Ⅱ)求出平面A1BD的法向量为,平面A1AD的法向量为,再利用向量的夹角公式,即可求得二面角A-A1D-B的正弦值.
解答:解:取BC中点O,连接AO.
∵△ABC为正三角形,∴AO⊥BC、
∵正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1
∴AO⊥平面BCC1B1
取B1C1中点O1,以0为原点,OB,OO1 ,OA 的方向为x、y、z轴的正方向建立空间直角坐标系
则B(1,0,0),D(-1,1,0),A1(0,2,3 ),A(0,0,3 ),B1(1,2,0),
(Ⅰ)
=-1+4-3=0,
∴AB1⊥BD,AB1 ⊥BA1
∴AB1⊥平面A1BD;
(Ⅱ)平面A1BD的法向量为
设平面A1AD的法向量为=(x,y,z),∴,∴
令z=1、y=0、x=-,则
∴cos
设二面角A-A1D-B的平面角为θ,即

即二面角A-A1D-B的正弦值为
点评:本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)设点O为AB1上的动点,当OD∥平面ABC时,求
AOOB1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中(注:底面为正三角形且侧棱与底面垂直),BC=CC1=2,P,Q分别为BB1,CC1的中点.
(Ⅰ)求多面体ABC-A1PC1的体积;
(Ⅱ)求A1Q与BC1所成角的大小.

查看答案和解析>>

同步练习册答案