精英家教网 > 高中数学 > 题目详情
椭圆 
x2
a2
+
y2
b2
=1
(a>b>0)上一点A关于原点的对称点为B,F为椭圆的右焦点,AF⊥BF,∠ABF=a,a∈[
π
12
π
4
],则椭圆的离心率的取值范围为
 
分析:设左焦点为F′,根据椭圆定义:|AF|+|AF′|=2a,根据B和A关于原点对称可知|BF|=|AF′|,推知|AF|+|BF|=2a,又根据O是Rt△ABF的斜边中点可知|AB|=2c,在Rt△ABF中用α和c分别表示出|AF|和|BF|代入|AF|+|BF|=2a中即可表示出
c
a
即离心率e,进而根据α的范围确定e的范围.
解答:解:∵B和A关于原点对称
∴B也在椭圆上
设左焦点为F′
根据椭圆定义:|AF|+|AF′|=2a
又∵|BF|=|AF′|∴|AF|+|BF|=2a  …①
O是Rt△ABF的斜边中点,∴|AB|=2c
又|AF|=2csinα    …②
|BF|=2ccosα    …③
②③代入①2csinα+2ccosα=2a
c
a
=
1
sinα+cosα

即e=
1
sinα+cosα
=
1
2
(sin(α+
π
4
)

∵a∈[
π
12
π
4
],
π
3
≤α+π/4≤
π
2

3
2
≤sin(α+
π
4
)≤1
2
2
≤e≤
6
3

故答案为[
2
2
6
3
]
点评:本题主要考查了椭圆的性质.解题时要特别利用好椭圆的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若椭圆
x2
a2
+y2=1(a>0)的一条准线经过抛物线y2=-8x的焦点,则该椭圆的离心率为(  )
A、
1
2
B、
1
3
C、
3
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是椭圆
x2a2
+y2=1   (a>1)
短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+y2=1
(a>0)的离心率为
3
2

(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0),若|AB|=
4
2
5
,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+y2=1上存在一点P,使得它对两个焦点F1,F2的张角∠F1PF2=
π
2
,则该椭圆的离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知椭圆
x2a2
+y2=1(a>1)
,直线l过点A(-a,0)和点B(a,ta)(t>0)交椭圆于M.直线MO交椭圆于N.
(1)用a,t表示△AMN的面积S;
(2)若t∈[1,2],a为定值,求S的最大值.

查看答案和解析>>

同步练习册答案