精英家教网 > 高中数学 > 题目详情
7、对任意实数x,若不等式|x+1|+|x-2|>k恒成立,则k的取值范围是(  )
分析:首先分析题目已知不等式|x+1|+|x-2|>k恒成立,求k的取值范围,即需要k小于|x+1|+|x-2|的最小值即可.对于求|x+1|+|x-2|的最小值,可以分析它几何意义:在数轴上点x到点-1的距离加上点x到点2的距离.分析得当x在-1和2之间的时候,取最小值,即可得到答案.
解答:解:已知不等式|x+1|+|x-2|>k恒成立,即需要k小于|x+1|+|x-2|的最小值即可.
故设函数y=|x+1|+|x-2|. 设-1、2、x在数轴上所对应的点分别是A、B、P.
则函数y=|x+1|+|x-2|的含义是P到A的距离与P到B的距离的和.
可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.
即:y=|x+1|+|x-2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x-2|的最小值为3.
即:k>3.
故选择D.
点评:此题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x-a|+|x-b|类型的函数可以用分析几何意义的方法求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:方程x2+mx+1=0有两个不等的负实根;q:对任意实数x不等式4x2+4(m-2)x+1>0恒成立,若p或q为真,p且q为假,求实数m的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

若m∈R,命题p:设x1和x2是方程x2-ax-3=0的两个实根,不等m2-2m-4≥|x1-x2|对任意实数a∈[-2,2]恒成立命题q:“4x+m<0”是“x2-x-2>0”的充分不必要条件.求使p且¬q为真命题的m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知p:方程x2+mx+1=0有两个不等的负实根;q:对任意实数x不等式4x2+4(m-2)x+1>0恒成立,若p或q为真,p且q为假,求实数m的取值范围..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:方程x2+mx+1=0有两个不等的负实根;q:对任意实数x不等式4x2+4(m-2)x+1>0恒成立,若p或q为真,p且q为假,求实数m的取值范围..

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省武威五中高三(上)期中数学试卷(文科)(解析版) 题型:解答题

已知p:方程x2+mx+1=0有两个不等的负实根;q:对任意实数x不等式4x2+4(m-2)x+1>0恒成立,若p或q为真,p且q为假,求实数m的取值范围..

查看答案和解析>>

同步练习册答案