精英家教网 > 高中数学 > 题目详情
已知函数是R上的减函数,则实数a的取值范围是   
【答案】分析:由函数在R上单调递减可得g(x)=(3a-1)x+4a在(-∞,1)单调递减,且h(x)=logx在[1,+∞)单调递减且g(1)≥h(1),代入可求a的范围.
解答:解:∵函数f在R上单调递减
∴g(x)=(3a-1)x+4a在(-∞,1)单调递减,且h(x)=logx在[1,+∞)单调递减,
且g(1)≥h(1)

解得a∈
故答案为:
点评:本题主要考查了分段函数的单调性的应用,分段函数在定义域上单调递减时,每段函数都递减,但要注意分界点处函数值的处理是解题中容易漏洞的考虑.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(-2,2)上的函数f(x)满足f(-m)+f(1-m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(-2,2)上的函数f(x)满足f(-m)+f(1-m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(-2,2)上的函数f(x)满足f(-m)+f(1-m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南通市启东中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(-2,2)上的函数f(x)满足f(-m)+f(1-m)<0,求实数m的取值范围.

查看答案和解析>>

同步练习册答案