精英家教网 > 高中数学 > 题目详情
给定点A(x,y),圆C:x2+y2=r2及直线l:xx+yy=r2,给出以下三个命题:
①当点A在圆C上时,直线l与圆C相切;
②当点A在圆C内时,直线l与圆C相离;
③当点A在圆C外时,直线l与圆C相交.
其中正确的命题个数是( )
A.0
B.1
C.2
D.3
【答案】分析:对于①,当点A在圆C上时,利用圆心到直线的距离公式,判断直线l与圆C相切是否正确;
对于②,当点A在圆C内时,利用圆心到直线的距离公式是否大于半径,判断直线l与圆C相离是否正确;
对于③当点A在圆C外时,利用圆心到直线的距离公式是否小于半径,判断直线l与圆C相交是否正确.
解答:解:①当点A在圆C上时,x2+y2=r2,直线l:xx+yy=r2
圆心到直线的距离:,直线l与圆C相切,正确;
②当点A在圆C内时,x2+y2<r2,直线l:xx+yy=r2
圆心到直线的距离,直线l与圆C相离,正确;
③当点A在圆C外时,x2+y2=r2,直线l:xx+yy=r2
圆心到直线的距离:,直线l与圆C相交,正确.
故选D.
点评:本题是基础题,考查点与圆的位置关系,圆心到直线的距离与半径的关系,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下4个命题,其中所有正确结论的序号是
(1)(3)
(1)(3)

(1)当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P则焦点在y轴上且过点P抛物线的标准方程是x2=
4
3
y.
(2)若直线l1:2kx+(k+1)y+1=0与直线l2:x-ky+2=0垂直,则实数k=1;
(3)已知数列{an}对于任意p,q∈N*,有ap+aq=ap+q,若a1=
1
9
,则a36=4
(4)对于一切实数x,令[x]大于x最大整数,例如:[3.05]=3,[
5
3
]=1,则函数f(x)=[x]称为高斯函数或取整函数,若an=f(
n
3
)(n∈N*),Sn为数列{an}的前n项和,则S50=145.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax-y+1=0与l2:x+ay+1=0(a∈R),给出如下结论:
①不论a为何值时,l1与l2都互相垂直;
②不论a为何值时,l1与l2都关于直线x+y=0对称;
③当a变化时,l1与l2分别经过定点A(0,1)和B(-1,0);
④当a变化时,l1与l2的交点轨迹是以AB为直径的圆(除去原点).
其中正确的结论有
①③④
①③④
.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳一模)给出下列四个命题:
①从匀速传递的产品生产流水线上,质检员每5分钟从中抽取一件产品进行检测,这样的抽样是分层抽样;
②样本方差反映了样本数据与样本平均值的偏离程度;
③回归直线
?
y
=
?
a
+
?
b
x必过定点(
.
x
.
y
);
④在回归方程
?
y
=2x+1中,当x每增加一个单位时,
?
y
就增加2个单位.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区一模)出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:|AB|=|x1-x2|+|y1-y2|,请解决以下问题:
(1)求点A(1,3)、B(6,9)的“距离”|AB|;
(2)求线段x+y=2(x≥0,y≥0)上一点M(x,y)的距离到原点O(0,0)的“距离”;
(3)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点A(1,3)、B(6,9),C(1,9),求经过这三个点确定的一个“圆”的方程,并画出大致图象;(说明所给图形小正方形的单位是1)

查看答案和解析>>

同步练习册答案