(本小题满分14分)已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,
2Sn=an an+1+r.
(1)若r=-6,数列{an}能否成为等差数列?若能,求
满足的条件;若不能,请说明理由;
(2)设
,
,
若r>c>4,求证:对于一切n∈N*,不等式
恒成立.
解:(1)n=1时,2a1=a1 a2+r,∵a1=c≠0,∴2c=ca2+r,
.
n≥2时,2Sn=an an+1+r,① 2Sn-1=an-1 an+r,②
①-②,得2an=an(an+1-an-1).∵an≠0,∴an+1-an-1=2.
则a1,a3,a5,…,a2n-1,… 成公差为2的等差数列,a2n-1=a1+2(n-1).
a2,a4,a6,…,a2n,… 成公差为2的等差数列, a2n=a2+2(n-1).
要使{an}为等差数列,当且仅当a2-a1=1.即
.r=c-c2.
∵r=-6,∴c2-c-6=0,c=-2或3.
∵当c=-2,
,不合题意,舍去.
∴当且仅当
时,数列
为等差数列 ……………………………………6分
(2)
=[a1+2(n-1)]-[a2+2(n-1)]=a1-a2=
-2.
=[a2+2(n-1)]-(a1+2n)=a2-a1-2=-(
). ………………………8分
∴![]()
.
![]()
=
. ……………………………………10分
∵r>c>4,∴
>4,∴
>2.∴0<
<1.
又∵r>c>4,∴
,则0<
;
.
∴
<1.
.∴
<1.
所以:![]()
![]()
又
>-1.
所以:![]()
综上,对于一切n∈N*,不等式
恒成立. ………………………14分
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com