精英家教网 > 高中数学 > 题目详情
已知f(x)=x2-ax+4.
(1)当a=2时,解不等式f(x)>x+14;
(2)若f(x)≤0对x∈[1,4]恒成立,求a的取值范围.
分析:(1)先把不等式整理成标准形式,再进行因式分解,从而可得不等式的解集.
(2)由x2-ax+4≤0对一切x∈[1,4]恒成立可得,a≥x+
4
x
在x∈[1,4]上恒成立从而转化为a≥(x+
4
x
max结合函数性质得到y=x+
4
x
在x∈[1,4]的最大值为5,即可求a的取值范围..
解答:解:(1)当a=2时,不等式f(x)>x+14等价于x2-2x+4>x+14
即是x2-3x-10>0,解得x<-2或x>5
故不等式的解集是{x|x<-2或x>5};
(2)解:∵x2-ax+4≤0对一切x∈[1,4]恒成立,
a≥x+
4
x
在x∈[1,4]上恒成立
构造函数y=x+
4
x
,x∈[1,4]
∴a≥ymax
∵函数y=x+
4
x
在[1,2]上单调递减,在[2,4]上单调递增
故y在x=1或4时,取得最大值5,
故a的取值范围是:a≥5
点评:本题主要考查一元二次不等式的解法以及函数恒成立问题,此类问题,①问关键是把次项系数化为正数,再进行因式分解,同时注意三个二次之间的关系.②问常构造函数,转化为求解函数的最值问题:a>f(x)(或a<f(x))恒成立?a>f(x)max(或a<f(x)min),体现了转化思想在解题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案