(本题满分12分)
设点P在曲线
上,从原点向A(2,4)移动,如果直线OP,曲线
及直线x=2所围成的面积分别记为
、
。![]()
(Ⅰ)当
时,求点P的坐标;
(Ⅱ)当
有最小值时,求点P的坐标和最小值.
(1)
;(2)
,P点的坐标为
。
解析试题分析:(Ⅰ)设点P的横坐标为t(0<t<2),则P点的坐标为
,
直线OP的方程为
--------------2分
,
----------6分
因为
,所以
,点P的坐标为
----------7分
(Ⅱ)
----------8分
,令S'=0得
,
----------9分
因为
时,S'<0;
时,S'>0 ----------11分
所以,当
时,
,P点的坐标为
----------12分
考点:定积分;微积分定理;利用导数来研究函数的单调性和最值。
点评:在平常做题中,很多同学认为面积就是定积分,定积分就是面积。这里理解是错误的。实际上,我们是用定积分来求面积,但并不等于定积分就是面积。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设
,点P(
,0)是函数
的图象的一个公共点,两函数的图象在点P处有相同的切线.
(1)用
表示a,b,c;
(2)若函数
在(-1,3)上单调递减,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知函数
(其中e为自然对数)
(1)求F(x)="h" (x)
的极值。
(2)设
(常数a>0),当x>1时,求函数G(x)的单调区间,并在极值存在处求极值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知函数f(x)=lnx+![]()
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设m
R,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>
∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知函数
,
,
,其中
且
.
(I)求函数
的导函数
的最小值;
(II)当
时,求函数
的单调区间及极值;
(III)若对任意的
,函数
满足
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com