已知
分别是椭圆
的左、右顶点,点
在椭圆
上,且直线
与直线
的斜率之积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,已知
是椭圆
上不同于顶点的两点,直线
与
交于点
,直线
与
交于点
.① 求证:
;② 若弦
过椭圆的右焦点
,求直线
的方程.![]()
(Ⅰ)
;(Ⅱ)①见解析;②
.
解析试题分析:(Ⅰ)根据点
在椭圆
上,且直线
与直线
的斜率之积为
,列出方程组即可求出
和
;(Ⅱ)①欲证:
,只需证:
,找到这个结论成立的条件,然后证明这些条件满足即可;②分成
和直线
斜率存在两种情况,利用
经过
这一条件,把问题变成直线与椭圆的交点,从而可以借助一元二次方程跟与系数的关系解题.
试题解析:(Ⅰ)由题,
,由点
在椭圆
上知
,则有:
,①
又
, ②
以上两式可解得
,
.所以椭圆
. 4分
(Ⅱ)① 设
,则直线
:
、直线
:
,
两式联立消去
得:
;
同理:直线
:
、
:
,联立得:
. 6分
欲证:
,只需证:
,只需证:
,
等价于:![]()
,
而
,
,所以
,
故有:
. 9分
② (1)当
时,由
可求得:
; 10分
(2)当直线
斜率存在时,设
:
,![]()
由(Ⅱ)知:
,
将
,
代入上式得:
,
解得
,由①知
.
综合(1) (1),
,故直线
:
. 14分.
考点:直线与椭圆的方程.
科目:高中数学 来源: 题型:解答题
已知
为椭圆
的左,右焦点,
为椭圆上的动点,且
的最大值为1,最小值为-2.
(I)求椭圆
的方程;
(II)过点
作不与
轴垂直的直线
交该椭圆于
两点,
为椭圆的左顶点。试判断
的大小是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在直角坐标系
中,曲线
的参数方程为:
(
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,直线
的极坐标方程为:
.
(Ⅰ)写出曲线
和直线
在直角坐标系下的方程;
(II)设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.
(Ⅰ)若ΔABF2为正三角形,求椭圆的离心率;
(Ⅱ)若椭圆的离心率满足
,0为坐标原点,求证
为钝角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知椭圆
:
的离心率
,且椭圆C上一点
到点Q
的距离最大值为4,过点
的直线交椭圆
于点![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足
(O为坐标原点),当
时,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,椭圆
的右焦点为
,离心率为
.
分别过
,
的两条弦
,
相交于点
(异于
,
两点),且
.
(1)求椭圆的方程;
(2)求证:直线
,
的斜率之和为定值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知椭圆
的左焦点为
,左、右顶点分别为
,上顶点为
,过
三点作圆
(Ⅰ)若线段
是圆
的直径,求椭圆的离心率;
(Ⅱ)若圆
的圆心在直线
上,求椭圆的方程;
(Ⅲ)若直线
交(Ⅱ)中椭圆于
,交
轴于
,求
的最大值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com