【题目】在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2﹣c2=ac﹣bc,
(1)求∠A的大小;
(2)求
的值.
【答案】
(1)解:∵a,b,c成等比数列,
∴b2=ac,代入原式得a2﹣c2=b2﹣bc,即a2=b2+c2﹣bc.
根据余弦定理a2=b2+c2﹣2bcCosA,∴2cosA=1,cosA=
,∴A=60°
(2)解:在△ABC中,由正弦定理得sinB=
,
∵b2=ac,∠A=60°,
∴
=
=sin60°=
.
【解析】(1)等比数列 可推知b2=ac 代入原式,求得a2=b2+c2﹣bc,进而根据余弦定理求得cosA的值,进而求得A的值.(2)把b2=ac和A的值代入正弦定理,即可求得
的值.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:
;余弦定理:
;
;
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知动圆
与圆
:
相切,且与圆
:
相内切,记圆心
的轨迹为曲线
.设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
,
两个不同的点.
(Ⅰ)求曲线
的方程;
(Ⅱ)试探究
和
的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(Ⅲ)记
的面积为
,
的面积为
,令
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:
![]()
| 应该取消 | 应该保留 | 无所谓 | |
在校学生 | 2100人 | 120人 | y人 | |
社会人士 | 600人 | x人 | z人 |
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中常数
.
(Ⅰ)当
,求函数
的单调递增区间;
(Ⅱ)设定义在
上的函数
在点
处的切线方程为
, 若
在
内恒成立,则称
为函数
的“类对称点”,当
时,试问
是否存在“类对称点”,若存在,请求出一个“类对称点”的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知以
为圆心的圆的方程为:
,以
为圆心的圆的方程为:
.
(1)若过点
的直线
沿
轴向左平移3个单位,沿
轴向下平移4个单位后,回到原来的位置,求直线
被圆
截得的弦长;
(2)圆
是以1为半径,圆心在圆
:
上移动的动圆 ,若圆
上任意一点
分别作圆
的两条切线
,切点为
,求
的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△OAB的顶点坐标为O(0,0),A(2,9),B(6,﹣3),点P的横坐标为14,且
,点Q是边AB上一点,且
.
(1)求实数λ的值与点P的坐标;
(2)求点Q的坐标;
(3)若R为线段OQ上的一个动点,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,
是某海湾旅游区的一角,其中
,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸
和
上分别修建观光长廊
和AC,其中
是宽长廊,造价是
元/米,
是窄长廊,造价是
元/米,两段长廊的总造价为120万元,同时在线段
上靠近点
的三等分点
处建一个观光平台,并建水上直线通道
(平台大小忽略不计),水上通道的造价是
元/米.
(1) 若规划在三角形
区域内开发水上游乐项目,要求
的面积最大,那么
和
的长度分别为多少米?
(2) 在(1)的条件下,建直线通道
还需要多少钱?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com