精英家教网 > 高中数学 > 题目详情
函数f(x)是定义域为R的可导函数,且对任意实数x都有f(x)=f(2-x)成立.若当x≠1时,不等式(x-1)•f′(x)<0成立,设a=f(0.5),,c=f(3),则a,b,c的大小关系是( )
A.b>a>c
B.a>b>c
C.c>b>a
D.a>c>b
【答案】分析:由题意可得函数f(x)的图象关于直线x=1对称,f(x)在(0,+∞)上是减函数,在(-∞,0)上是增函数.再由|3-1|>|0.5-1|>|-1|,故 f()>f(0.5)>f(3),
由此得出结论.
解答:解:由f(x)=f(2-x)可得,函数f(x)的图象关于直线x=1对称.
再由 (x-1)•f′(x)<0成立可得,当x>1,f′(x)<0,故函数f(x)在(0,+∞)上是减函数;
当x<1,f′(x)>0,故函数f(x)在(-∞,0)上是增函数.
由于|3-1|>|0.5-1|>|-1|,故 f()>f(0.5)>f(3),即 b>a>c,
故选A.
点评:本题主要考查函数的对称性和单调性的应用,不等式与不等关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为R的偶函数,且f(x+1)=-f(x),若f(x)在[-1,0]上是减函数,那么f(x)在[1,3]上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为R的奇函数,且它的图象关于直线x=1对称.
(1)求f(0)的值.
(2)证明函数f(x)是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为(-1,1)上的奇函数也是减函数
(1)若x∈(-1,0)时,f(x)=-x+1,求f(x);
(2)若f(1-a)<f(a2-1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为R的可导函数,且满足(x2+3x-4)f′(x)<0,给出下列说法:
①函数f(x)的单调递减区间是(-∞,-4)∪(1,+∞);
②f(x)有2个极值点;
③f(0)+f(2)>f(-5)+f(-3);
④f(x)在(-1,4)上单调递增.
其中不正确的说法是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义域为R,最小正周期是
2
的函数,且当0≤x≤π时,f(x)=sinx,则f(-
15π
4
)
=
 

查看答案和解析>>

同步练习册答案