½â£º£¨1£©ÓÉÓÚ3¡Á4 Óë

¾ù²»ÊôÓÚÊý¼¯{1£¬3£¬4}£¬¡àÊý¼¯{1£¬3£¬4} ²»¾ßÓÐÐÔÖÊP ¡2·Ö
ÓÉÓÚ1¡Á2£¬1¡Á3£¬1¡Á6£¬2¡Á3£¬

£¬

£¬

¶¼ÊôÓÚÊý¼¯{1£¬2£¬3£¬6}£¬
¡àÊý¼¯{1£¬2£¬3£¬6} ¾ßÓÐÐÔÖÊP¡4·Ö
£¨2£©¡ßA={a
1£¬a
2£¬¡£¬a
n} ¾ßÓÐÐÔÖÊP£¬
¡àa
na
n Óë

ÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA£¬ÓÉÓÚ 1¡Üa
1£¼a
2£¼¡a
n£¬¹Êa
na
n∉A ¡5·Ö
´Ó¶ø

¡6·Ö¡àa
1=1 ¡7·Ö
µ±n=3 ʱ£¬¡ß

£¬a
1=1£¬a
2a
3∉A£¬¡à

¶¼ÊôÓÚA ¡8·Ö
´Ó¶ø

£¬

£¬

£¬¼´a
3=a
1a
3=a
22£¬¡9·Ö
¹ÊÊýÁÐa
1£¬a
2£¬a
3 ³ÉµÈ±ÈÊýÁС10·Ö
£¨3£©¶ÔÓÚÒ»ÇдóÓÚ»òµÈÓÚ3µÄÆæÊýn£¬Âú×ãÐÔÖÊP µÄÊýÁÐa
1£¬a
2£¬¡£¬a
n ³ÉµÈ±ÈÊýÁУ® ¡12·Ö
Ö¤Ã÷£ºÓÉ£¨2£©£¬²»·ÁÉèn=2k+1£¨k¡ÊN£¬k¡Ý2£©£®Ê×ÏÈÒ×µÃa
2k+1a
i∉A£¨i=1£¬¡2k£©£¬Öª

¶¼ÊôÓÚA£¬ÓÖ

£¬´Ó¶ø£¬ÓÐ

£¬¼´ a
2k+1=a
1a
2k+1=a
2a
2k=a
3a
2k-1=¡=a
i+2a
2k-i=¡=a
2a
k+2=a
k+12 ¡£¨©~£© ÒòΪa
i+ja
2k-i£¾a
i+2a
2k-i=a
2k+1£¨0¡Üi¡Ük-2£¬3¡Üj¡Ü2k-2i£©£¬ËùÒÔ£¬Ö»ÓÐ

£¬

£¬

¾ùÊôÓÚA£® ½«i ´Ó0 µ½k-2 Áо٣¬±ãµÃµ½£º
µÚ1×飺

£¬¹²2k-2 Ï
µÚ2×飺

£¬¹²2k-4 Ï
µÚ3×飺

£¬¹²2k-6 Ï
¡µÚk-1 ×飺

£¬¹²2 ÏÉÏÒ»×éµÄµÚ2Ïî×Ü´óÓÚÏÂÒ»×éµÄµÚ1Ï
ÔÙ×¢Òâµ½

£¬¹ÊµÚ1×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa
2k-2£¬a
2k-3£¬a
2k-4£¬¡£¬a
2£¬a
1£»µÚ2×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa
2k-4£¬a
2k-5£¬a
2k-6£¬¡£¬a
2£¬a
1£»µÚ3×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa
2k-6£¬a
2k-7£¬a
2k-8£¬¡£¬a
2£¬a
1£» ¡µÚk-1 ×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa
2£¬a
1£®ÓÚÊÇ£¬ÓÐ

£¬ÓÉ£¨©~£©£¬

£¬

£¬¡£¬

£¬ÓÖ

£¬¹ÊÊýÁÐa
1£¬a
2£¬¡£¬a
n ³ÉµÈ±ÈÊýÁУ®¡15·Ö
·ÖÎö£º£¨1£©¸ù¾ÝÐÔÖÊP£»¶ÔÈÎÒâµÄi£¬j£¨1¡Üi¡Üj¡Ün£©£¬a
ia
jÓë

Á½ÊýÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA£¬ÑéÖ¤¸øµÄ¼¯ºÏ¼¯{1£¬3£¬4}Óë{1£¬2£¬3£¬6}ÖеÄÈκÎÁ½¸öÔªËØµÄ»ýÉÌÊÇ·ñΪ¸Ã¼¯ºÏÖеÄÔªËØ£»
£¨2£©¸ù¾ÝA={a
1£¬a
2£¬¡£¬a
n} ¾ßÓÐÐÔÖÊP£¬Ôòa
na
n Óë

ÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA£¬ÓÉÓÚ 1¡Üa
1£¼a
2£¼¡a
n£¬¹Êa
na
n∉A ´Ó¶ø

Çó³öa
1µÄÖµ£¬Ò×Ö¤

¶¼ÊôÓÚA£¬´Ó¶ø

£¬

£¬

£¬¼´a
3=a
1a
3=a
22£¬Âú×ãµÈ±ÈÊýÁе͍Ò壻
£¨3£©¶ÔÓÚÒ»ÇдóÓÚ»òµÈÓÚ3µÄÆæÊýn£¬Âú×ãÐÔÖÊP µÄÊýÁÐa
1£¬a
2£¬¡£¬a
n ³ÉµÈ±ÈÊýÁУ¬ÓÉ£¨2£©£¬²»·ÁÉèn=2k+1£¨k¡ÊN£¬k¡Ý2£©£®Ê×ÏÈÒ×µÃa
2k+1a
i∉A£¨i=1£¬¡2k£©£¬·ÂÕÕ£¨2£©µÄ·½·¨½øÐÐÖ¤Ã÷¼´¿É£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¼¯ºÏ¡¢µÈ±ÈÊýÁеÄÐÔÖÊ£¬¿¼²éÔËËãÄÜÁ¦¡¢ÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢·Ö·ÖÀàÌÖÂÛµÈÊýѧ˼Ïë·½·¨£®´ËÌâÄܺܺõĿ¼²éѧÉúµÄÓ¦ÓÃ֪ʶ·ÖÎö¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬²àÖØÓÚ¶ÔÄÜÁ¦µÄ¿¼²é£¬ÊôÓÚ½ÏÄѲã´ÎÌ⣮