【题目】如图,四棱锥
中,
是正三角形,四边形
是菱形,点
是
的中点.
![]()
(I)求证:
// 平面
;
(II)若平面
平面
,
, 求直线
与平面
所成角的正弦值.
【答案】(I)证明见解析;(II)
.
【解析】
(I)连接BD交AC于点F,再连接EF,利用EF是三角形DBS的中位线,判断出DS平行EF,再利用线面平行的判定得证;
(II)取AB的中点为O,利用已知条件证明DO、SO、BO两两垂直,然后建立空间直角坐标系,求出平面ADC的法向量,再利用线面角的公式求出直线
与平面
所成角的正弦值.
(I)证明:连接BD角AC于点F,再连接EF.
因为四边形
是菱形,所以点F是BD的中点,
又因为点
是
的中点,所以EF是三角形DBS的中位线,
所以DS平行EF,
又因为EF
平面ACE,SD
平面ACE
所以
// 平面![]()
(II)因为四边形
是菱形,
,所以
又AB=AD,所以三角形ABD为正三角形.
取AB的中点O,连接SO,则DO
AB
因为平面
平面
,平面
平面
=AB
所以DO
平面ABS,又因为三角形ABS为正三角形
则以O为坐标原点建立坐标系
![]()
设AB=2a,则
设平面ADS的一个法向量为
则
取x=1,则
所以![]()
设直线AC与平面ADS所成角为
则![]()
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的方程为
,曲线
:
(
为参数,
),在以原点
为极点,
轴正半轴为极轴的极坐标系中,曲线
:
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若直线
与曲线
有公共点,且直线
与曲线
的交点
恰好在曲线
与
轴围成的区域(不含边界)内,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了更好地服务民众,某共享单车公司通过
向共享单车用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用
扫码用车后,都可获得一张骑行券.用户骑行一次获得1元奖券、获得2元奖券的概率分别是0.5、0.2,且各次获取骑行券的结果相互独立.
(I)求用户骑行一次获得0元奖券的概率;
(II)若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为
,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以
为直径的圆上每一点都染上了红、黄、蓝三色之一,已知
、
染上了红色,联结圆上的点组成三角形,给出4个结论:
①必定存在一个直角三角形,三个顶点同为红色;
②必定存在一个直角三角形,三个顶点同色;
③必定存在一个直角三角形,三个顶点全不同色;
④必定存在一个直角三角形,或都三个顶点同色,或者三个顶点全不同色。
则真命题的个数是( )个。
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,点
,直线
,设圆
的半径为1, 圆心在
上.
![]()
(1)若圆心
也在直线
上,过点
作圆
的切线,求切线方程;
(2)若圆
上存在点
,使
,求圆心
的横坐标
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知拋物线
的焦点为
是抛物线上横坐标为4且位于
轴上方的点,点
到抛物线准线的距离等于5.过点
作
垂直于
轴,垂足为
的中点为
.
(1)求抛物线方程;
(2)过点
作
,垂足为
,求点
的坐标;
(3)以点
为圆心,
为半径作圆
,当
是
轴上一动点时,讨论直线
与圆
的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“五一”期间,为了满足广大人民的消费需求,某共享单车公司欲投放一批共享单车,单车总数不超过100辆,现有A,B两种型号的单车:其中A型车为运动型,成本为400元
辆,骑行半小时需花费
元;B型车为轻便型,成本为2400元
辆,骑行半小时需花费1元
若公司投入成本资金不能超过8万元,且投入的车辆平均每车每天会被骑行2次,每次不超过半小时
不足半小时按半小时计算
,问公司如何投放两种型号的单车才能使每天获得的总收入最多,最多为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com