精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,曲线C1的参数方程为
x=2cosα
y=2+2sinα
(α为参数)M是C1上的动点,P点满足
OP
=2
OM
,P点的轨迹为曲线C2
(Ⅰ)求C2的方程;
(Ⅱ)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=
π
3
与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.
分析:(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;
(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=
π
3
与C1的交点A的极径为ρ1,以及射线θ=
π
3
与C2的交点B的极径为ρ2,最后根据|AB|=|ρ21|求出所求.
解答:解:(I)设P(x,y),则由条件知M(
x
2
y
2
).由于M点在C1上,
所以
x
2
=2cosα
y
2
=2+2sinα
x=4cosα
y=4+4sinα

从而C2的参数方程为
x=4cosα
y=4+4sinα
(α为参数)
(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.
射线θ=
π
3
与C1的交点A的极径为ρ1=4sin
π
3

射线θ=
π
3
与C2的交点B的极径为ρ2=8sin
π
3

所以|AB|=|ρ21|=2
3
点评:本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足
MN
=
MF1
+
MF2
,直线l∥MN,且与C1交于A,B两点,若
OA
OB
=0
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(2cosx+1,2cos2x+2)和点Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标系xOy中,射线OA在第一象限,且与x轴的正半轴成定角60°,动点P在射线OA上运动,动点Q在y轴的正半轴上运动,△POQ的面积为2
3

(1)求线段PQ中点M的轨迹C的方程;
(2)R1,R2是曲线C上的动点,R1,R2到y轴的距离之和为1,设u为R1,R2到x轴的距离之积.问:是否存在最大的常数m,使u≥m恒成立?若存在,求出这个m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知圆M的方程为x2+y2-4xcosα-2ysinα+3cos2α=0(α为参数),直线l的参数方程为
x=tcosθ
y=1+tsinθ
(t
为参数)
(I)求圆M的圆心的轨迹C的参数方程,并说明它表示什么曲线;
(II)求直线l被轨迹C截得的最大弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案