【题目】已知椭圆
,离心率为
,两焦点分别为
,过
的直线交椭圆
于
两点,且
的周长为8.
(1)求椭圆
的方程;
(2)过点
作圆
的切线
交椭圆
于
两点,求弦长
的最大值.
【答案】(1)
(2)![]()
【解析】试题分析:(1)求椭圆标准方程,一般利用待定系数法,即根据条件列两个独立方程:一是离心率
,二是椭圆定义:
的周长为
,解方程组得
,
(2)涉及弦长问题,一般利用直线方程与椭圆方程联立方程组,结合韦达定理和弦长公式求弦长:设切线
的方程为
,则
,再根据直线与圆相切得
,即
,代入化简得
,最后利用基本不等式求最值
试题解析:(1)由题得:
,........................1分
,...............................3分
所以
.........................4分
又
,所以
,........................5分
即椭圆
的方程为
....................6分
(2)由题意知,
,设切线
的方程为
,
由
,得
...............7分
设
,
则
.....................8分
,
由过点
的直线
与圆
相切得
,即
,
所以
....11分
,
当且仅当
时,
,所以
的最大值为2...................12分
科目:高中数学 来源: 题型:
【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.,当每辆车的月租金定为x元时,租赁公司的月收益为y元,
(1)试写出x,y的函数关系式(不要求写出定义域);
(2)租赁公司某月租出了88辆车,求租赁公司的月收益多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果一个几何体的主视图与左视图都是全等的长方形,边长分别是4cm与2cm如图所示,俯视图是一个边长为4cm的正方形. ![]()
(1)求该几何体的全面积.
(2)求该几何体的外接球的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,并根据 ![]()
(1)写出函数f(x)(x∈R)的增区间;
(2)写出函数f(x)(x∈R)的解析式;
(3)若函数g(x)=f(x)﹣2ax+2(x∈[1,2]),求函数g(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四组函数中,是同一个函数的是( )
A.
, ![]()
B.f(x)=2log2x, ![]()
C.f(x)=ln(x﹣1)﹣ln(x+1), ![]()
D.f(x)=lg(1﹣x)+lg(1+x),g(x)=lg(1﹣x2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2﹣3x﹣10≤0},B={x|m﹣4≤x≤3m+2}.
(1)若A∪B=B,求实数m的取值范围;
(2)若A∩B=B,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)过点P(﹣1,﹣1),c为椭圆的半焦距,且c=
b.过点P作两条互相垂直的直线l1 , l2与椭圆C分别交于另两点M,N.
(1)求椭圆C的方程;
(2)若直线l1的斜率为﹣1,求△PMN的面积;
(3)若线段MN的中点在x轴上,求直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,当x<0时,f(x)=(
)x .
(1)求当x>0时f(x)的解析式;
(2)画出函数f(x)在R上的图象; ![]()
(3)写出它的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com