直线y=kx+b与曲线
交于A、B两点,记△AOB的面积为S(O是坐标原点).
(1)求曲线的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(3)当|AB|=2,S=1时,求直线AB的方程.![]()
(1)离心率
.(2)当
时, S取到最大值1.
(3)
或
或
或
.
解析试题分析:(1)转化成标准方程
,明确曲线为椭圆,
,进一步得到椭圆的离心率.
(2)设点A的坐标为
,点B的坐标为
,由
,解得
,
将面积用b表示.
(3)由
,应用弦长公式,得到|AB|=
,
根据O到AB的距离得到
代入上式并整理,解得k,b.
试题解析:(1)曲线的方程可化为:
,
∴此曲线为椭圆,
,
∴此椭圆的离心率
. 4分
(2)设点A的坐标为
,点B的坐标为
,
由
,解得
, 6分
所以![]()
当且仅当
时, S取到最大值1. 8分
(3)由
得
,
①
|AB|=
②
又因为O到AB的距离
,所以
③
③代入②并整理,得![]()
解得,
,代入①式检验,△>0 ,
故直线AB的方程是
或
或
或
. 14分
考点:椭圆的几何性质,直线与椭圆的位置关系,点到直线的距离公式,函数的最值.
科目:高中数学 来源: 题型:解答题
如图所示,
、
分别为椭圆
:![]()
的左、右两个焦点,
、
为两个顶点,已知顶点
到
、
两点的距离之和为
.
(1)求椭圆
的方程;
(2)求椭圆
上任意一点
到右焦点
的距离的最小值;
(3)作
的平行线交椭圆
于
、
两点,求弦长
的最大值,并求
取最大值时
的面积.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
分别是椭圆
的左,右焦点.
(1)若
是椭圆在第一象限上一点,且
,求
点坐标;(5分)
(2)设过定点
的直线
与椭圆交于不同两点
,且
为锐角(其中
为原点),求直线
的斜率
的取值范围.(7分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xoy中,已知椭圆C:
=1(a>b≥1)的离心率e=
,且椭圆C上的点到点Q (0,3)的距离最大值为4,过点M(3,0)的直线交椭圆C于点A、B.
(1)求椭圆C的方程。
(2)设P为椭圆上一点,且满足
(O为坐标原点),当|AB|<
时,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在平面直角坐标系
中,设椭圆
,其中
,过椭圆
内一点![]()
的两条直线分别与椭圆交于点
和
,且满足
,
,其中
为正常数. 当点
恰为椭圆的右顶点时,对应的
.
(1)求椭圆
的离心率;
(2)求
与
的值;
(3)当
变化时,
是否为定值?若是,请求出此定值;若不是,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
经过点
,且两焦点与短轴的两个端点的连线构成一正方形.(12分)
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
,
两点,若线段
的垂直平分线经过点
,求![]()
(
为原点)面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
在平面直角坐标系
中,椭圆
的离心率为
,直线
被椭圆
截得的线段长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过原点的直线与椭圆
交于
两点(
不是椭圆
的顶点).点
在椭圆
上,且
,直线
与
轴、
轴分别交于
两点.
(i)设直线
的斜率分别为
,证明存在常数
使得
,并求出
的值;
(ii)求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com