【题目】如图,在四棱锥
中,底面
是边长为2的菱形,
,
,平面
平面
,点
为棱
的中点.
![]()
(Ⅰ)在棱
上是否存在一点
,使得
平面
,并说明理由;
(Ⅱ)当二面角
的余弦值为
时,求直线
与平面
所成的角.
【答案】(1)见解析(2)![]()
【解析】
(Ⅰ)取
的中点
,连结
、
,得到故
且
,进而得到
,利用线面平行的判定定理,即可证得
平面
.
(Ⅱ)以
为坐标原点建立如图空间直角坐标系,设
,求得平面
的法向量为
,和平面
的法向量
,利用向量的夹角公式,求得
,进而得到
为直线
与平面
所成的角,即可求解.
(Ⅰ)在棱
上存在点
,使得
平面
,点
为棱
的中点.
理由如下:取
的中点
,连结
、
,由题意,
且
,
且
,故
且
.所以,四边形
为平行四边形.
所以,
,又
平面
,
平面
,所以,
平面
.
(Ⅱ)由题意知
为正三角形,所以
,亦即
,
又
,所以
,且平面
平面
,平面
平面
,
所以
平面
,故以
为坐标原点建立如图空间直角坐标系,
![]()
设
,则由题意知
,
,
,
,
,
,
设平面
的法向量为
,
则由
得
,令
,则
,
,
所以取
,显然可取平面
的法向量
,
由题意:
,所以
.
由于
平面
,所以
在平面
内的射影为
,
所以
为直线
与平面
所成的角,
易知在
中,
,从而
,
所以直线
与平面
所成的角为
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)在(-1,1)上有定义,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(
),试证明
(1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于利用斜二侧法得到的直观图有下列结论:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形,以上结论正确的是( )
A. ①② B. ① C. ③④ D. ①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中有一分鹿问题:“今有大夫、不更、簪袅、上造、公士,凡五人,共猎得五鹿.欲以爵次分之,问各得几何.”在这个问题中,大夫、不更、簪袅、上造、公士是古代五个不同爵次的官员,现皇帝将大夫、不更、簪枭、上造、公士这5人分成3组派去三地执行公务(每地至少去1人),则不同的方案有( )种.
A.150B.180C.240D.300
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(
,
)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数y=f(x),若在其定义域内存在x0,使得x0f(x0)=1成立,则称函数f(x)具有性质M.
(1)下列函数中具有性质M的有____
①f(x)=﹣x+2
②f(x)=sinx(x∈[0,2π])
③f(x)=x
,(x∈(0,+∞))
④f(x)![]()
(2)若函数f(x)=a(|x﹣2|﹣1)(x∈[﹣1,+∞))具有性质M,则实数a的取值范围是____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年中秋季到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:
)进行了问卷调查,得到如下频率分布直方图:
![]()
(1)求频率分布直方图中
的值;
(2)已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的
,请根据人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求?
(3)由频率分布直方图可以认为,该销售范围内消费者的月饼购买量
服从正态分布
,其中样本平均数
作为
的估计值,样本标准差
作为
的估计值,设
表示从该销售范围内的消费者中随机抽取10名,其月饼购买量位于
的人数,求
的数学期望.
附:经计算得
,若随机变量
服从正态分布
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用A和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:
![]()
(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数(同一组中的数据用该组区间的中点值作代表).
(2)根据以上抽样调查数据,将频率视为概率,回答下列问题:
①能否认为使用B款订餐软件“平均送达时间”不超过40分的商家达到75%?
②如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com