(1)明MF是异面直线AB与PC的公垂线;
(2)若
,求直线AC与平面EAM所成角的正弦值。
![]()
| (I)证明:因PA⊥底面,有PA⊥AB,又知AB⊥AD,
故AB⊥面PAD,推得BA⊥AE, 又AM∥CD∥EF,且AM=EF, 证得AEFM是矩形,故AM⊥MF. 又因AE⊥PD,AE⊥CD,故AE⊥面PCD, 而MF∥AE,得MF⊥面PCD, 故MF⊥PC, 因此MF是AB与PC的公垂线. (II)解:连结BD交AC于O,连结BE,过O作BE的垂线OH, 垂足H在BE上. 易知PD⊥面MAE,故DE⊥BE, 又OH⊥BE,故OH//DE, 因此OH⊥面MAE. 连结AH,则∠HAO是所要求的线AC与面NAE所成的角 设AB=a,则PA=3a,
因Rt△ADE~Rt△PDA,故
|
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
| AE |
| AP |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| ||
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com