(本题满分14分)已知函数![]()
.
(Ⅰ)当
时,函数
取得极大值,求实数
的值;
(Ⅱ)已知结论:若函数![]()
在区间
内存在导数,则存在
,使得
. 试用这个结论证明:若函数
(其中
),则对任意
,都有
;
(Ⅲ)已知正数
满足
,求证:对任意的实数
,若
时,都有
.
(1)![]()
(2)构造函数h(x)=f(x)-g(x),然后借助于函数的导数判定单调性,然后证明最小值大于零即可。而第三问中,在上一问的基础上,运用结论放缩得到证明。
【解析】
试题分析:(Ⅰ)由题设,函数的定义域为
,且![]()
所以
,得
,此时.![]()
当
时,
,函数
在区间
上单调递增;
当
时,
,函数
在区间
上单调递减.
函数
在
处取得极大值,故
…………………………4分
(Ⅱ)令
,
则
.
因为函数
在区间
上可导,则根据结论可知:存在![]()
使得
…………………………7分
又
,![]()
当
时,
,从而
单调递增,
;
当
时,
,从而
单调递减,
;
故对任意
,都有
. …………………………9分
(Ⅲ)
,且
,
,![]()
![]()
同理![]()
, …………………………12分
由(Ⅱ)知对任意
,都有
,从而
.
…………………………14分
考点:考查了导数的运用
点评:解决该试题的关键是根据导数的符号,确定函数单调性,进而分析得到最值,证明不等式的成立。属于中档题 。
科目:高中数学 来源:2012-2013学年吉林省高三第一次月考文科数学试卷(解析版) 题型:解答题
(本题满分14分)已知函数![]()
(1)若
,求x的值;
(2)若
对于
恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题
(本题满分14分)
已知椭圆
:
的离心率为
,过坐标原点
且斜率为
的直线
与
相交于
、
,
.
⑴求
、
的值;
⑵若动圆
与椭圆
和直线
都没有公共点,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题
((本题满分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF
(如图).
(1)当x=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为
,
求
的最大值;
![]()
![]()
(3)当
取得最大值时,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com