精英家教网 > 高中数学 > 题目详情
正三棱锥P-ABC中,∠APB=∠BPC=∠APC=30°,AP=BP=CP=
2
,过点A作平面分别交PB、PC于E、F,则△AEF的周长的最小值为
2
2
分析:画出正三棱锥P-ABC侧面展开图,将问题转化为求平面上两点间的距离最小值问题,不难求得结果.
解答:解:将三棱锥由PA展开,如图,
∵正三棱锥P-ABC中,∠APB=∠BPC=∠APC=30°,则图中∠APA1=90°,
AA1为所求,
又∵PA=PA1=
2

故△PAA1为等腰直角三角形
∵PA=
2

∴AA1=2,
故答案为:2.
点评:本题考查的知识点是棱锥的结构特征,其中将三棱锥的侧面展开,将空间问题转化为平面上两点之间的距离问题,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在正三棱锥P-ABC中,M、N分别是侧棱PB、PC的中点,若截面AMN⊥侧面PBC,则此三棱锥的侧棱与底面所成角的正切值是.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,三条侧棱两两垂直,且侧棱长为a,则点P到平面ABC的距离为
3
3
a
3
3
a

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•镇江一模)在正三棱锥P-ABC中,D,E分别是AB,BC的中点,有下列三个结论:①AC⊥PB; ②AC∥平面PDE;③AB⊥平面PDE.则所有正确结论的序号是
①②
①②

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,E、F分别是PA、AB的中点,若∠CEF=90°,且AB=
2
,则三棱锥P-ABC外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是
6
6
6
6

查看答案和解析>>

同步练习册答案