【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列
满足:
,
,
.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前
项所占的格子的面积之和为
,每段螺旋线与其所在的正方形所围成的扇形面积为
,则下列结论正确的是( )
![]()
A.
B.![]()
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】已知点
、
为双曲线
的左、右焦点,过
作垂直于
轴的直线,在
轴上方交双曲线
于点
,且
.
![]()
(1)求双曲线
的两条渐近线的夹角
;
(2)过点
的直线
和双曲线
的右支交于
、
两点,求
的面积的最小值;
(3)过双曲线
上任意一点
分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于
、
两点,求平行四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为利于分层教学,某学校根据学生的情况分成了A,B,C三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下:
A类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 145 | 83 | 95 | 72 | 110 |
,
;
B类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 85 | 93 | 90 | 76 | 101 |
,
;
C类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 85 | 92 | 101 | 100 | 112 |
,
;
(1)经计算己知A,B的相关系数分别为
,
.,请计算出C学生的
的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,
越大认为成绩越稳定)
(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为
,利用线性回归直线方程预测该生第十次的成绩.
附相关系数
,线性回归直线方程
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(多选题)如图,设
的内角
所对的边分别为
,若
成等比数列,
成等差数列,
是
外一点,
,下列说法中,正确的是( )
![]()
A.
B.
是等边三角形
C.若
四点共圆,则
D.四边形
面积无最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,经统计知年份x和储蓄
存款y (千亿元)具有线性相关关系,下表是该地某银行连续五年的储蓄存款(年底余额),
如下表(1):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
表(1)
为了研究计算的方便,工作人员将上表的数据进行了处理,令![]()
得到下表(2):
时间代号t | 1 | 2 | 3 | 4 | 5 |
| 0 | 1 | 2 | 3 | 5 |
表(2)
(1)由最小二乘法求
关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的线性回归方程;
(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线
的斜率和截距的最小二乘估计分别为
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从高三学生中抽取
名学生参加数学竞赛,成绩(单位:分)的分组及各数据绘制的频率分布直方图如图所示,已知成绩的范围是区间
,且成绩在区间
的学生人数是
人,
![]()
(1)求
的值;
(2)若从数学成绩(单位:分)在
的学生中随机选取
人进行成绩分析
①列出所有可能的抽取结果;
②设选取的
人中,成绩都在
内为事件
,求事件
发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com