精英家教网 > 高中数学 > 题目详情

(本题满分13分)

       如图,在三棱柱中,已知侧面

   (1)求直线C1B与底面ABC所成角的正弦值;

   (2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).

   (3)在(2)的条件下,若,求二面角的大小.

解:如图,以B为原点建立空间直角坐标系,则

   (1)直三棱柱中,

       平面的法向量

       又

       设

       则

   (2)设,则

       ,∴   ,即 

   (3)∵,则

       设平面的法向量, 则

       取

       ∵

       又

       ∴平面的法向量,∴

       ∴二面角为45°.

练习册系列答案
相关习题

科目:高中数学 来源:2015届天津市高一第一次月考数学试卷(解析版) 题型:解答题

(本题满分13分)

已知集合.

(1) 求;   (2) 若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省宁波万里国际学校高三上期中理科数学试卷(解析版) 题型:解答题

(本题满分13分)的三个内角依次成等差数列.

   (Ⅰ)若,试判断的形状;

   (Ⅱ)若为钝角三角形,且,求

的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市朝阳区高三上学期期末考试理科数学 题型:解答题

(本题满分13分)

在锐角中,分别为内角所对的边,且满足

(Ⅰ)求角的大小;

(Ⅱ)若,且,求的值.

 

查看答案和解析>>

科目:高中数学 来源:重庆市09-10学年高二下学期5月月考(数学文) 题型:解答题

(本题满分13分)展开式中,求:

(1)第6项;   (2) 第3项的系数;   (3)常数项。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省龙岩市高三上学期期末考试数学理卷(一级学校) 题型:解答题

(本题满分13分)

如图,在五面体ABCDEF中,FA平面ABCDAD//BC//FEABADAFABBCFEAD.

(Ⅰ)求异面直线BFDE所成角的余弦值;

(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案