精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知E,F分别是正方形ABCD边BC、CD的中点,EF与AC交于点O,PA、NC都垂直于平面ABCD,且PA=AB=4,NC=2,M是线段PA上一动点.
(Ⅰ)求证:平面PAC⊥平面NEF;
(Ⅱ)若PC∥平面MEF,试求PM:MA的值;
(Ⅲ)当M是PA中点时,求二面角M-EF-N的余弦值.
分析:(Ⅰ)连接BD,由已知中E,F分别是正方形ABCD边BC、CD的中点,EF与AC交于点O,PA、NC都垂直于平面ABCD,由线面垂直的性质及三角形中位线定理可得EF⊥平面PAC,再由面面垂直的判定定理,即可得到平面PAC⊥平面NEF;
(Ⅱ)连接OM,由线面平行的性质定理,可得PC∥OM,再由平行线分线段成比例定理得到PM:MA的值;
(Ⅲ)由(Ⅰ)的结论,EF⊥平面PAC,可得EF⊥OM,而在等腰三角形NEF中,由等腰三角形“三线合一”可得NO⊥EF,故∠MON为所求二面角M-EF-N的平面角,解三角形MON即可得到答案.
解答:精英家教网解:(Ⅰ)连接BD,
∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD,
又∵BD⊥AC,AC∩PA=A,
∴BD⊥平面PAC,
又∵E,F分别是BC、CD的中点,
∴EF∥BD,
∴EF⊥平面PAC,又EF?平面NEF,
∴平面PAC⊥平面NEF;(4分)
(Ⅱ)连接OM,
∵PC∥平面MEF,平面PAC∩平面MEF=OM,
∴PC∥OM,
PM
PA
=
OC
AC
=
1
4
,故PM:MA=1:3(6分)
(Ⅲ)∵EF⊥平面PAC,OM?平面PAC,∴EF⊥OM,
在等腰三角形NEF中,点O为EF的中点,∴NO⊥EF,
∴∠MON为所求二面角M-EF-N的平面角,(8分)
∵点M是PA的中点,∴AM=NC=2,
所以在矩形MNCA中,可求得MN=AC=4
2
NO=
6
MO=
22
,(10分)
在△MON中,由余弦定理可求得cos∠MON=
MO2+ON2-MN2
2•MO•ON
=-
33
33

∴二面角M-EF-N的余弦值为-
33
33
.(12分)
点评:本题考查的知识点虽二面角的平面角及求法,直线与平面平行的性质及平面与平面垂直的判定及性质,判断空间直线与平面之间的位置关系,熟练掌握相应判定定理是关键,而求二面角,找出二面角的平面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

如图,已知EFG分别为正方体ABCD-A1B1C1D1ABB1C1DD1上的一点,试过EFG三点作正方体ABCD-A1B1C1D1的截面.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

如图,已知EFG分别为正方体ABCD-A1B1C1D1ABB1C1DD1上的一点,试过EFG三点作正方体ABCD-A1B1C1D1的截面.

查看答案和解析>>

科目:高中数学 来源:导学大课堂选修数学2-1苏教版 苏教版 题型:047

如图,已知E、F、G、H、K、L分别为正方体AC1的棱,AA1、BB、BC、CC1、C1D1、A1D1的中点,求证:EF、GH、KL三线共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知EFGHKL分别为正方体AC1的棱AA1ABBCCC1C1D1A1D1的中点.

求证:EFGHKL三线共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知E、F、G、H分别为空间四边形ABCD的边AB、BC、CD、DA的中点.

(1)求证:E、F、G、H四点共面;

(2)求证:BD//平面EFGH;

(3)设M是EG和FH的交点,求证:对于空间任意一点O有

.

查看答案和解析>>

同步练习册答案