精英家教网 > 高中数学 > 题目详情
奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)=   
【答案】分析:先利用条件找到f(3)=-1,f(6)=8,再利用f(x)是奇函数求出f(-6),f(-3)代入即可.
解答:解:f(x)在区间[3,6]上也为递增函数,即f(6)=8,f(3)=-1
∴2f(-6)+f(-3)=-2f(6)-f(3)=-15
故答案为:-15
点评:本题考查了函数奇偶性和单调性的应用.若已知一个函数为奇函数,则应有其定义域关于原点对称,且对定义域内的一切x都有f(-x)=-f(x)成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果奇函数f(x)在区间[1,4]上是增函数且最大值是5,那么f(x)在区间[-4,-1]上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[-2,2]上的奇函数f(x)在区间[-2,0]上单调递减,若f(a)+f(a-1)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在区间(a,b)上是减函数,证明f(x)在区间(-b,-a)上仍是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在区间[-1,1]上是增函数,且f(-1)=-1.当x∈[-1,1]时,函数f(x)≤t2-2at+1,对一切a∈[-1,1]恒成立,则实数t的取值范围为(  )

查看答案和解析>>

同步练习册答案