精英家教网 > 高中数学 > 题目详情
已知双曲线的离心率为,右焦点为F,过点M(1,0)且斜率为1的直线与双曲线C交于A,B两点,并且
(1)求双曲线方程;
(2)过右焦点F作直线l交双曲线C右支于P,Q两点,问在原点与右顶点之间是否存在点N,使的无论直线l的倾斜角多大,都有∠PNF=∠QNF.
【答案】分析:(1)依题意可分别求得a和b,a和c的关系代入双曲线的方程,设出A,B的坐标利用韦达定理表示出x1+x2和x1x2,进而利用直线方程求得y1y2的表达式,进而利用得关于a的方程求得a,则b可求.则椭圆的方程可得.
解答:解:(1)由题意知b2=2a2,c2=3a2,代入双曲线得x2+2x-1-2a2=0.
设A(x1,y1),B(x2,y2),
则有x1+x2-2,x1x2=-2a21,y1y2=x1x2-(x1+x2)+1=-2a2+2.
,则


,方程为
(2)直线l:y=k(x-3),.设P(x,y),Q(x3,y3),N(x4,y4),
联立方程得(2-k2)x2+6k2x-9k2-6=0,

∵∠PNF=∠QNF,
∴kPN+kQN=+=
,所以存在点N.
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生分析问题和推理能力,基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为(  )
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=12
3
.该双曲线的标准方程为
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中数学 来源:2011-2012学年云南省高三上学期第一次月考试题文科数学 题型:解答题

(本小题满分12分)

已知双曲线的离心率为2,焦点到渐近线的距离等于,过右焦点的直线

 

交双曲线于两点,为左焦点,

(Ⅰ)求双曲线的方程;

(Ⅱ)若的面积等于,求直线的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二上学期第二次月考理科数学试卷 题型:解答题

已知双曲线的离心率为2,焦点到渐近线的距离为,点P的坐标为(0,-2),过P的直线l与双曲线C交于不同两点M、N.  

(1)求双曲线C的方程;

(2)设(O为坐标原点),求t的取值范围

 

查看答案和解析>>

同步练习册答案