ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èôa1=1£¬Sn=nan-n£¨n-1£©£¬n¡ÊN*£¬Áîbn=
1
anan+1
£¬ÇÒÊýÁÐ{bn}µÄǰÏîºÍΪTn£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ¬²¢Ð´³öan¹ØÓÚnµÄ±í´ïʽ£»
£¨2£©Èô²»µÈʽ¦ËTn£¼
n+8
5
£¨¦ËΪ³£Êý£©¶ÔÈÎÒâÕýÕûÊýn¾ù³ÉÁ¢£¬Çó¦ËµÄȡֵ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓеÄm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÓÉSn=nan-n£¨n-1£©£¬n¡ÊN*¢Ù
Ôòµ±n¡Ý2ʱ£¬Sn-1=£¨n-1£©an-1-£¨n-1£©£¨n-2£©¢Ú
¢Ù-¢Ú£¬µÃan=[nan-n£¨n-1£©]-[£¨n-1£©an-1-£¨n-1£©£¨n-2£©]
ÕûÀíµÃ£¬an-an-1=2£¨n¡Ý2£©¡­£¨3·Ö£©
ËùÒÔ£¬{an}ΪµÈ²îÊýÁУ¬ÇÒ¹«²îΪ2£¬an=1+2£¨n-1£©=2n-1£»                     
£¨2£©bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

¡àTn=b1+b2+b3+¡­+bn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+¡­+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)=
n
2n+1

Èô²»µÈʽ¦ËTn£¼
n+8
5
¶ÔÈÎÒâÕýÕûÊýn¾ù³ÉÁ¢£¬Ôò¦Ë£¼
1
5
(2n+1)(n+8)
n
=
1
5
[2(n+
4
n
)+17]
¶ÔÈÎÒâÕýÕûÊýn¾ù³ÉÁ¢£¬
¡ßn+
4
n
¡Ý4
£¬µ±ÇÒ½öµ±n=2¡ÊN*ʱȡ¡°=¡±£¬
¡à
1
5
[2(n+
4
n
)+17]
µÄ×î´óֵΪ5¡à¦Ë£¼5£»                                   
£¨3£©¼ÙÉè´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁÐ
Ôò£¨Tm£©2=T1•Tn£¬¼´(
m
2m+1
)2=
1
3
n
2n+1

ËùÒÔ£¬
m2
4m2+4m+1
=
n
6n+3

´Ó¶ø£¬
4m2+4m+1
m2
=
6n+3
n
=6+
3
n
£¾6

ËùÒÔ£¬2m2-4m-1£¼0£¬¼´1-
6
2
£¼m£¼1+
6
2

ÒòΪ£¬m¡ÊN*£¬ÇÒm£¾1£¬¡àm=2£¬´Ëʱ£¬n=12
¹Ê£¬µ±ÇÒ½öµ±m=2£¬n=12ʱ£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

19¡¢ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=n2£¨n¡ÊN*£©£¬ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬ÇÒÂú×ãb1=a1£¬2b3=b4
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{anbn}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=an2+bn£¨a¡¢b¡ÊR£©£¬ÇÒS25=100£¬Ôòa12+a14µÈÓÚ£¨¡¡¡¡£©
A¡¢16B¡¢8C¡¢4D¡¢²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=n2+n+1£¬ÄÇôËüµÄͨÏʽΪan=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

13¡¢ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn=3n+a£¬Èô{an}ΪµÈ±ÈÊýÁУ¬ÔòʵÊýaµÄֵΪ
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×ãSn+1=kSn+2£¬ÓÖa1=2£¬a2=1£®
£¨1£©ÇókµÄÖµ¼°Í¨Ïʽan£®
£¨2£©ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸