精英家教网 > 高中数学 > 题目详情

设F1、F2分别是椭圆数学公式的左、右焦点,其右焦点是直线y=x-1与x轴的交点,短轴的长是焦距的2倍.
(1)求椭圆的方程;
(2)若P是该椭圆上的一个动点,求数学公式的最大值和最小值;
(3)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.

解:(1)易知直线y=x-1与x轴的交点是(1,0),所以c=1,且b=2c=2,
所以椭圆的方程是…(4分)
(2)易知F1=(-1,0),F2(1,0)…(6分)
设P(x,y),则
=…(8分)∵,∴当x=0,即点P为椭圆短轴端点时,有最小值3;
,即点P为椭圆长轴端点时,有最大值4 …(10分)
(3)假设存在这样的直线:y=kx+b 5k+b=0 k=-
连接F2C,F2D,并作F2H垂直于CD,交直线y与H,△F2CD为等腰△
设C 点的坐标为(x1,y1)D 点的坐标为(x2,y2),DH的斜率为:
把y=kx+b和联立,并消去y:
(20+b2)x2-10b2 x+25b2-100=0
根据二次方程定理:
同理
∴直线的斜率.方程b无解
故不存在直线,使得|F2C|=|F2D|
分析:(1)易知直线y=x-1与x轴的交点是(1,0),利用右焦点是直线y=x-1与x轴的交点,短轴的长是焦距的2倍所以c=1,且b=2c=2,故方程可求;
(2)设P(x,y),则=
根据x的取值范围能够得到的最大值和最小值;
(3)假设存在满足条件的直线l.由题意知点A(5,0)在椭圆的外部,当直线l的斜率不存在时,直线l与椭圆无交点,所在直线l斜率存在,设为k,则直线l的方程为y=k(x-5),再把直线y=k(x-5)和椭圆 联系方程用根的判别式求l的方程或说明理由.
点评:本题的考点是直线与圆锥曲线的综合运用.主要考查椭圆的标准方程,考查椭圆与向量的结合,最值的求解,考查代入法求轨迹方程,解题时要仔细审题,认真解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
短轴长为2,P(x0,y0)(x0≠±a)是椭圆上一点,A,B分别是椭圆的左、右顶点,直线PA,PB的斜率之积为-
1
4

(1)求椭圆的方程;
(2)当∠F1PF2为钝角时,求P点横坐标的取值范围;
(3)设F1,F2分别是椭圆的左右焦点,M、N是椭圆右准线l上的两个点,若
F1M
F2N
=0
,求MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年丰台区二模)(14分)

设F1、F2分别是椭圆的左、右焦点。

   (I)若M是该椭圆上的一个动点,求的最大值和最小值;

    (II)设过定点(0,2)的直线l与椭圆交于不同两点A、B,且∠AOB为钝角(其中O为坐标原点),求直线l的斜率k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为          .

查看答案和解析>>

科目:高中数学 来源:2009年上海市南汇区高考数学二模试卷(文科)(解析版) 题型:解答题

设F1、F2分别是椭圆的左、右焦点,其右焦点是直线y=x-1与x轴的交点,短轴的长是焦距的2倍.
(1)求椭圆的方程;
(2)若P是该椭圆上的一个动点,求的最大值和最小值;
(3)若P是该椭圆上的一个动点,点A(5,0),求线段AP中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省广州市高三上学期第3次月考理科数学试卷(解析版) 题型:填空题

设F1、F2分别是椭圆的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为                   .

 

查看答案和解析>>

同步练习册答案