精英家教网 > 高中数学 > 题目详情
已知三棱锥A-BCD及其三视图如图所示.
(1)求三棱锥A-BCD的体积;
(2)点D到平面ABC的距离;
(3)求二面角 B-AC-D的正弦值.
分析:(1)由三视图即可得出:AD⊥底面CBD,AD=2,底面△BCD为等腰直角三角形,∠CBD=90°,BC=BD=1,即可求出体积;
(2)过D点作DE⊥AB交AB于E,根据条件只要证明:DE即为点D到平面ABC的距离,进而求出即可.
(3)过点D作DF⊥AC交AC于点F,连接EF,证明∠DFE即为二面角的平面角并求出即可.
解答:解:(1)由三视图可知:AD⊥底面CBD,AD=2,底面△BCD为等腰直角三角形,∠CBD=90°,BC=BD=1.
∴V三棱锥A-BCD=
1
3
S△BCD×AD
=
1
3
×
1
2
×12×2
=
1
3

(2)过D点D作DE⊥AB交AB于E,
由(1)可知:AD⊥平面BCD,∴AD⊥BC,
又BC⊥BD,AD∩BD=D,
∴BC⊥平面ABD,∴BC⊥DE.
∵AB∩BC=B,∴DE⊥平面ABC.
∴DE即为点D到平面ABC的距离.
在Rt△ABD中,DE=
AD•DB
AB
=
2×1
22+12
=
2
5
5

(3)过点D作DF⊥AC交AC于点F,连接EF.
由(1)可知:DE⊥平面ABC.
∴DF⊥AC.
则∠DFE即为二面角的平面角.
在Rt△ADC中,由勾股定理可得AC=
22+(
2
)2
=
6

∴DF=
AD•DC
AC
=
2
6
=
2
3
3

在Rt△DEF中,sin∠DFE=
DE
DF
=
2
5
5
2
3
3
=
15
5
点评:由三视图正确得到原几何体的位置关系,熟练掌握线面垂直的判定和性质定理及二面角的求法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是直线AC,AD上的点,且
AE
AC
=
AF
AD
=λ.
(1)求二面角B-CD-A平面角的余弦值
(2)当λ为何值时,平面BEF⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥A-BCD中,AB=CD,且直线AB与CD成60°角,点M、N分别是BC、AD的中点,则直线AB和MN所成的角是
60°
60°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥A-BCD的各棱长均为1,且E是BC的中点,则
AE
CD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1992•云南)已知三棱锥A-BCD的体积是V,棱BC的长是a,面ABC和面DBC的面积分别是S1和S2.设面ABC和面DBC所成的二面角是α,那么sinα=
3aV
2S1S2
3aV
2S1S2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)已知三棱锥A-BCD及其三视图如图所示.
(I)若DE⊥AB于E,DE⊥AC于F,求证:AC⊥平面DEF;
(Ⅱ)求二面角B-AC-D的大小.

查看答案和解析>>

同步练习册答案