精英家教网 > 高中数学 > 题目详情
如图,△ABC是某屋顶的断面,CD⊥AB,横梁AB的长是竖梁CD长的2倍.设计时应使y=tanA+2tanB保持最小,试确定D点的位置,并求y的最小值.
分析:首先设CD=1,则AB=2,再设AD=x,得BD=2-x,(0<x<2),然后根据直角三角形中三角函数的定义,得到tanA=
1
x
且tgB=
1
2-x
,代入y=tanA+2tanB的表达式,再进行配凑,得到y=-
1
x+2+
8
x+2
-6
,最后通过基本不等式讨论分母的最小值,可得y的最小值是
3+2
2
2
.根据取等号的条件得到:当且仅当x=2
2
-2
时,取到这个最小值,求出AD与DB的比值,从而确定D点的位置,问题得到解决.
解答:解:设CD=1,则AB=2,再设AD=x,得BD=2-x,(0<x<2)
∵Rt△ACD中,tanA=
CD
AD
=
1
x
,Rt△BCD中,tanB=
CD
BD
=
1
2-x

y=tanA+2tanB=
CD
AD
+
2CD
BD

=
1
x
+
2
2-x
=
x+2
x(2-x)
=
1
-x2+2x
x+2
=-
1
x+2+
8
x+2
-6

x+2+
8
x+2
≥4
2
;当且仅当(x+2)2=8,x=2
2
-2
时取等号
∴当x=2
2
-2
时,y取得最小值-
1
4
2
-6
=
3+2
2
2

此时DB=2-(2
2
-2)=4-2
2

AD:DB=
2
2
-2
4-2
2
=
1
2

答:取AD:DB=1:
2
时,y有最小值
3+2
2
2
点评:本题借助于一个实际问题,通过求函数的最小值,着重考查了任意角三角函数的定义、基本不等式和函数的值域与最值等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:河南省信阳市商城高中2006-2007学年度高三数学单元测试、不等式二 题型:044

解答题:解答应写出文字说明,证明过程或演算步骤.

如图,△ABC是某屋顶的断面,CD⊥AB,横梁AB的长是竖梁CD长的2倍.设计时应使保持最小,试确定D点的位置,并求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△ABC是某屋顶的断面,CD⊥AB,横梁AB的长是竖梁CD长的2倍.设计时应使y=tanA+2tanB保持最小,试确定D点的位置,并求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC是某屋顶的断面,CD⊥AB,横梁AB的长是竖梁CD长的2倍.设计时,应使y=tanA+2tanB保持最小,试确定D点位置,并求y的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年广东省广州一中高三数学二轮复习:不等式(解析版) 题型:解答题

如图,△ABC是某屋顶的断面,CD⊥AB,横梁AB的长是竖梁CD长的2倍.设计时应使y=tanA+2tanB保持最小,试确定D点的位置,并求y的最小值.

查看答案和解析>>

同步练习册答案