设数列
:
,即当
时,记
.记
. 对于
,定义集合
是
的整数倍,
,且
.
(1)求集合
中元素的个数;
(2)求集合
中元素的个数.
科目:高中数学 来源: 题型:解答题
设函数
,数列
满足
.
⑴求数列
的通项公式;
⑵设
,若
对
恒成立,求实数
的取值范围;
⑶是否存在以
为首项,公比为
的数列
,
,使得数列
中每一项都是数列
中不同的项,若存在,求出所有满足条件的数列
的通项公式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于给定数列
,如果存在实常数
使得
对于任意
都成立,我们称数列
是“
数列”.
(Ⅰ)若
,
,
,数列
、
是否为“
数列”?若是,指出它对应的实常数
,若不是,请说明理由;
(Ⅱ)证明:若数列
是“
数列”,则数列
也是“
数列”;
(Ⅲ)若数列
满足
,
,
为常数.求数列
前
项的和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列
是等差数列,![]()
(1)判断数列
是否是等差数列,并说明理由;
(2)如果
,试写出数列
的通项公式;
(3)在(2)的条件下,若数列
得前n项和为
,问是否存在这样的实数
,使
当且仅当
时取得最大值。若存在,求出
的取值范围;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com