精英家教网 > 高中数学 > 题目详情
已知平行六面体ABCD-A1B1C1D1,化简下列向量表达式,并填上化简后的结果向量:
(1)
AB
+
C1B
+
CD1
=
 

(2)
AB
+
AD
+
AA1
=
 
分析:画出平行六面体ABCD-A1B1C1D1,根据向量的平行四边形法则求出和向量,可解(1)(2).
解答:精英家教网解:(1)
AB
+
C1B
+
CD1
=
AB
+
CD1
+
C1B

=
DC
+
CD1
+
C1B
=
DD1
+
C1B
=
CB

(2)
AB
+
AD
+
AA1
AC
+
AA1
AC1

故答案为:(1)
CB
,(2)
AC1
点评:本题考查空间向量的加减法,考查分析问题解决问题的能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1
(I)若G为△ABC的重心,
A1M
=3
MG
,设
AB
=a,
AD
=b,
AA1
=c
,用向量a、b、c表示向量
A1M

(II)若平行六面体ABCD-A1B1C1D1各棱长相等且AB⊥平面BCC1B1,E为CD中点,AC1∩BD1=O,求证;OE⊥平面ABC1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平行六面体ABCD-A1B1C1D1
(I)若G为△ABC的重心,数学公式,设数学公式,用向量a、b、c表示向量数学公式
(II)若平行六面体ABCD-A1B1C1D1各棱长相等且AB⊥平面BCC1B1,E为CD中点,AC1∩BD1=O,求证;OE⊥平面ABC1D1

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省芜湖一中高二(上)期中数学试卷(文科)(解析版) 题型:解答题

如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?

查看答案和解析>>

同步练习册答案