精英家教网 > 高中数学 > 题目详情
如图,F是抛物线y2=2px(p>0)的焦点,Q是准线与x轴的交点,斜率为k的直线l经过点Q.
(1)当K取不同数值时,求直线l与抛物线交点的个数;
(2)如直线l与抛物线相交于A、B两点,求证:KFA+KFB是定值
(3)在x轴上是否存在这样的定点M,对任意的过点Q的直线l,如l
与抛物线相交于A、B两点,均能使得kMA•kMB为定值,有则找出满足条
件的点M;没有,则说明理由.

【答案】分析:(1)设代入y2=2px,得:
然后结合k的取值和根的判别式求直线l与抛物线交点的个数.

(2)设交点A(x1,y1),B(x2,y2),
由此可求出KFA+KFB是定值0.

(3)如存在满足条件的点M(t,0),
使得KMA•KMB=
仅当t=0,即M(0,0)时,KMA•KMB=4.
解答:解:(1)设代入y2=2px
得:(*)1k=0,一个交点,2k≠0,△=-4p2(k2-1),
△>0,即k∈(-1,0)∪(0,1)两个交点
△=0,k=±1时一个交点
△<0,k<-1或k>1无交点
(2)设交点A(x1,y1),B(x2,y2),
=
斜率和为定值0
(3)如存在满足条件的点M(t,0),使得KMA•KMB为定值,
=
仅当t=0,即M(0,0)时,KMA•KMB=4
点评:本题考查椭圆的性质及其综合运用,解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,F是抛物线y2=2px(p>0)的焦点,Q是准线与x轴的交点,斜率为k的直线l经过点Q.
(1)当K取不同数值时,求直线l与抛物线交点的个数;
(2)如直线l与抛物线相交于A、B两点,求证:KFA+KFB是定值
(3)在x轴上是否存在这样的定点M,对任意的过点Q的直线l,如l
与抛物线相交于A、B两点,均能使得kMA•kMB为定值,有则找出满足条
件的点M;没有,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F是抛物线y2=4x的焦点,Q是准线与x轴的交点,直线l经过点Q.
(Ⅰ)直线l与抛物线有唯一公共点,求l方程;
(Ⅱ)直线l与抛物线交于A、B两点;(i)设FA、FB的斜率分别为k1,k2,求k1+k2的值;
(ii)若点R在线段AB上,且满足
|AR|
|RB|
=|
AQ
QB
|
,求点R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F是抛物线y2=4x的焦点,Q是准线与x轴的交点,直线l经过点Q.

(1)直线l与抛物线有唯一公共点,求l的方程;

(2)直线l与抛物线交于AB两点.

(ⅰ)记FAFB的斜率分别为k1k2,求k1+k2的值为;

(ⅱ)若点R在线段AB上,且满足,求点R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省德州市乐陵一中高三(上)期末数学复习训练试卷11(解析版) 题型:解答题

如图,F是抛物线y2=4x的焦点,Q是准线与x轴的交点,直线l经过点Q.
(Ⅰ)直线l与抛物线有唯一公共点,求l方程;
(Ⅱ)直线l与抛物线交于A、B两点;(i)设FA、FB的斜率分别为k1,k2,求k1+k2的值;
(ii)若点R在线段AB上,且满足,求点R的轨迹方程.

查看答案和解析>>

同步练习册答案