如图,椭圆
经过点
,离心率
,直线
的方程为
.![]()
(1)求椭圆
的方程;
(2)
是经过右焦点
的任一弦(不经过点
),设直线
与直线
相交于点
,记
的斜率分别为
.问:是否存在常数
,使得
?若存在,求
的值;若不存在,说明理由.
(1)
;(2)
.
解析试题分析:(1)将点
代入椭圆的方程得到
,结合离心率
且
,即可求解出
,进而写出椭圆的标准方程即可;(2)依题意知,直线
的斜率存在,先设直线
的方程为
,并设
,联立直线
的方程与椭圆
的方程,消去
得到
,根据二次方程根与系数的关系得到
,由直线
及
的方程确定点
的坐标(含
),进而得到
,
进而整理出
(注意关注并应用
共线得到
),从而可确定
的取值.
试题解析:(1)由
在椭圆上得,
①
依题设知
,则
②
②代入①解得![]()
故椭圆
的方程为
(2)由题意可设
的斜率为
, 则直线
的方程为
③
代入椭圆方程
并整理
得![]()
设
,则有
④
在方程③中令
得,
的坐标为![]()
从而![]()
注意到
共线,则有
,即有![]()
所以
⑤
④代入⑤得
又
,所以
.故存在常数
符合题意.
考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的综合问题;3.二次方程根与系数的关系.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).
(1)求抛物线C的标准方程;
(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率为
,F为椭圆的右焦点,M、N两点在椭圆C上,且
=λ
(λ>0),定点A(-4,0).
(1)求证:当λ=1时,
⊥
;
(2)若当λ=1时,有
·
=
,求椭圆C的方程..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设定圆
,动圆
过点
且与圆
相切,记动圆
圆心
的轨迹为
.
(1)求轨迹
的方程;
(2)已知
,过定点
的动直线
交轨迹
于
、
两点,
的外心为
.若直线
的斜率为
,直线
的斜率为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的左、右焦点坐标分别是(-
,0),(
,0),离心率是
.直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(1)求椭圆C的方程;
(2)若圆P与x轴相切,求圆心P的坐标;
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过椭圆
的左顶点
作斜率为2的直线,与椭圆的另一个交点为
,与
轴的交点为
,已知
.
(1)求椭圆的离心率;
(2)设动直线
与椭圆有且只有一个公共点
,且与直线
相交于点
,若
轴上存在一定点
,使得
,求椭圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com