精英家教网 > 高中数学 > 题目详情
已知直线y=-x+1与椭圆=1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为,焦距为2,求椭圆方程;
(2)在(1)的条件下,求线段AB的长;
(3)若椭圆的离心率,向量与向量互相垂直(其中O为坐标原点),求椭圆的长轴的取值范围.
【答案】分析:(1)利用椭圆的离心率为,焦距为2,建立方程,求出几何量,即可求椭圆方程;
(2)直线方程与椭圆方程联立,利用韦达定理结合弦长公式,可求线段AB的长;
(3)直线方程与椭圆方程联立,利用韦达定理,结合椭圆的离心率,向量与向量互相垂直,即可求得椭圆的长轴的取值范围.
解答:解:(1)∵,∴
∴椭圆的方程为…(3分)
(2)联立消去y得:5x2-6x-3=0,
设A(x1,y1),B(x2,y2

…(8分)
(3)设A(x1,y1),B(x2,y2
,∴
消去y得(a2+b2)x2-2a2x+a2(1-b2)=0
由△=(-2a22-4a2(a2+b2)(1-b2)>0整理得a2+b2>1(*)

∴x1x2+y1y2=x1x2+(-x1+1)(-x2+1)=2x1x2-(x1+x2)+1=0
整理得:a2+b2-2a2b2=0
∴b2=a2-c2=a2-a2e2
代入上式得∴

满足(*)式,
…(14分)
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线y=-x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为
3
3
,焦距为2,求椭圆的标准方程;
(2)若OA⊥OB(其中O为坐标原点),当椭圆的离率e∈[
1
2
2
2
]
时,求椭圆的长轴长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=x-1与双曲线交于两点M,N 线段MN的中点横坐标为-
2
3
双曲线焦点c为
7
,则双曲线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=-x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为
3
3
,焦距为2,求椭圆方程;
(2)在(1)的条件下,求线段AB的长;
(3)若椭圆的离心率e∈(
2
2
,1)
,向量
OA
与向量
OB
互相垂直(其中O为坐标原点),求椭圆的长轴的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y-x=1与曲线y=ex(其中e为自然数2.71828…)相切于点p,则点p的点坐标为
(0,1)
(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=-x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
相交于A、B两点.
(1)若椭圆的离心率为
3
3
,焦距为2,求线段AB的长;
(2)(文科做)若线段OA与线段OB互相垂直(其中O为坐标原点),求
1
a2
+
1
b2
的值;
(3)(理科做)若线段OA与线段OB互相垂直(其中O为坐标原点),当椭圆的离心率e∈[
1
2
2
2
]
时,求椭圆的长轴长的最大值.

查看答案和解析>>

同步练习册答案