(本题14分)已知点(1,
)是函数
且
)的图象上一点,等比数列
的前
项和为
,数列![]()
的首项为
,且前
项和
满足
-
=
+
(
).
(1)求数列
和
的通项公式;
(2)若数列{
前
项和为
,问
的最小正整数
是多少? .
科目:高中数学 来源:2011年广东省揭阳市第一中学高二上学期期末检测数学理卷 题型:解答题
(本题14分)已知点(1,
)是函数
且
)的图象上一点,等比数列
的前
项和为
,数列![]()
的首项为
,且前
项和
满足
-
=
+
(
).
(1)求数列
和
的通项公式;
(2)若数列{
前
项和为
,问
的最小正整数
是多少? .
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省湛江市高三下学期第六次月考考试文科数学 题型:解答题
..(本题14分)已知
为常数,且
,函数
,
(
,为自然对数的底数)
(Ⅰ)求实数
的值;
(Ⅱ)求函数
的单调区间;
(Ⅲ)当
时,是否同时存在实数
和
(
<
),使得对每一个
,直线
与曲线
(
)都有公共点?若存在,求出最小的实数
和最大的实数
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省龙岩市高三上学期期末考试数学理卷(一级学校) 题型:解答题
(本题满分14分)
已知点A(2,0),![]()
. P为
上的动点,线段BP上的点M满足|MP|=|MA|.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过点B(-2,0)的直线
与轨迹C交于S、T两点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题14分)已知点(1,
)是函数
且
)的图象上一点,等比数列
的前
项和为
,数列![]()
的首项为
,且前
项和
满足
-
=
+
(
).
(1)求数列
和
的通项公式;
(2)若数列{
前
项和为
,问
的最小正整数
是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com