ÈçͼF1£¨-c£¬0£©£¬F2£¨c£¬0£©ÎªË«ÇúÏßEµÄÁ½½¹µã£¬ÒÔF1F2Ϊֱ¾¶µÄÔ²OÓëË«ÇúÏßE½»ÓÚM¡¢N¡¢M1¡¢N1£¬BÊÇÔ²OÓëyÖáµÄ½»µã£¬Á¬½ÓMM1ÓëOB½»ÓÚH£¬ÇÒHÊÇOBµÄÖе㣮
£¨1£©µ±c=1ʱ£¬ÇóË«ÇúÏßEµÄ·½³Ì£»
£¨2£©ÊÔÖ¤£º¶ÔÈÎÒâµÄÕýʵÊýc£¬Ë«ÇúÏßEµÄÀëÐÄÂÊΪ³£Êý£»
£¨3£©Á¬½ÓF1MÓëË«ÇúÏßE½»ÓÚµãA£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹
F1A
=¦Ë
AM
ºã³ÉÁ¢£¬Èô´æÔÚÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉc=1£¬ÖªB£¨0£¬1£©£¬H(0£¬
1
2
)£¬M(
3
2
£¬
1
2
)
£¬ÓÉ´ËÄÜÇó³öË«ÇúÏßEµÄ·½³Ì£®
£¨2£©ÓÉF1(-c£¬0)£¬B(0£¬c)£¬H(0£¬
c
2
)£¬M(
3
c
2
£¬
c
2
)
£¬Äܹ»Ö¤Ã÷¶ÔÈÎÒâµÄÕýʵÊýc£¬Ë«ÇúÏßEµÄÀëÐÄÂÊΪ³£Êýe=
2
£®
£¨3£©Éè´æÔÚ³£Êý¦Ë£¬Ê¹
F1A
=¦Ë
AM
ºã³ÉÁ¢
£¬ËùÒÔF1(-c£¬0)£¬M(
3
c
2
£¬
c
2
)
£¬
A(
(
3
¦Ë-2)c
2(1+¦Ë)
£¬
¦Ëc
2(1+¦Ë)
)£¬AÔÚEÉÏ£¬Ôò
(
3
¦Ë-2)
2
c2
4(1+¦Ë)2a2
-
¦Ë2c2
4(1+¦Ë)2b2
=1
£¬ÓÉe=
2
£¬Ôò
c
a
=
c
b
=
2
£¬Öª¦Ë=
3
-1
4
£®
½â´ð£º½â£º£¨1£©ÓÉc=1ÓÐB£¨0£¬1£©£¬H(0£¬
1
2
)£¬M(
3
2
£¬
1
2
)
£¬
ÉèE£º
x2
a2
-
y2
b2
=1(a£¾0£¬b£¾0)£¬MÔÚEÉÏ
£¬Ôò
a2+b2=1
3
4a2
-
1
4b2
=1
½âµÃ
a2=
1
2
b2=
1
2
£¬
¡àµ±c=1ʱ£¬Ë«ÇúÏßEµÄ·½³ÌE£º2x2-2y2=1
£¨2£©F1(-c£¬0)£¬B(0£¬c)£¬H(0£¬
c
2
)£¬M(
3
c
2
£¬
c
2
)

ÉèE£º
x2
a2
-
y2
b2
=1(a£¾0£¬b£¾0)£¬
a2+b2=c2
3c2
4a2
-
c2
4b2
=1
£¬¼´3e4-8e2+4=1
£¬
e2=2»òe2=
2
3
(Éá)
£¬
¡àe=
2
Ϊ³£Êý    £¨8·Ö£©
£¨3£©Éè´æÔÚ³£Êý¦Ë£¬
ʹ
F1A
=¦Ë
AM
ºã³ÉÁ¢
£¬
¡àF1(-c£¬0)£¬M(
3
c
2
£¬
c
2
)
£¬
ÓÐA(
(
3
¦Ë-2)c
2(1+¦Ë)
£¬
¦Ëc
2(1+¦Ë)
)£¬AÔÚEÉÏ£¬Ôò
(
3
¦Ë-2)
2
c2
4(1+¦Ë)2a2
-
¦Ë2c2
4(1+¦Ë)2b2
=1
£¬
¡ße=
2
£¬
Ôò
c
a
=
c
b
=
2
£¬
¡à¦Ë=
3
-1
4

¡à´æÔÚ³£Êý¦Ë=
3
-1
4
ʹ
F1A
=¦Ë
AM
ºã³ÉÁ¢
£¨12·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëË«ÇúÏßµÄλÖùØÏµ£¬Ë«ÇúÏߵļòµ¥ÐÔÖʵȻù´¡ÖªÊ¶£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ¶¥µãΪA1¡¢A2¡¢B1¡¢B2£¬½¹µãΪF1£¬
F2£¬|A1B1|=
7
£¬
S?A1B1A2B 2=2S?B1F1B2F 2
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèlÊǹýÔ­µãµÄÖ±Ïߣ¬Ö±ÏßnÓël´¹Ö±ÏཻÓÚPµã£¬ÇÒnÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£¬|OP|=1£¬Çó
AP
PB
µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÀäË®½­ÊÐÒ»ÖÐ2007½ì¸ßÈýµÚÊ®´ÎÄ£Ä⿼ÊÔÀí¿ÆÊýѧÊÔ¾í ÌâÐÍ£º044

ÈçͼF1(£­c£¬0)F2(c£¬0)Ϊ˫ÇúÏßEµÄÁ½½¹µã£¬ÒÔF1F2Ϊֱ¾¶µÄÔ²OÓëË«ÇúÏßE½»ÓÚM¡¢N¡¢M1¡¢N1£¬BÊÇÔ²OÓëyÖáµÄ½»µã£¬Á¬½ÓMM1ÓëOB½»ÓÚH£¬ÇÒHÊÇOBµÄÖе㣬

(1)µ±c£½1ʱ£¬ÇóË«ÇúÏßEµÄ·½³Ì£»(4·Ö)

(2)ÊÔÖ¤£º¶ÔÈÎÒâµÄÕýʵÊýc£¬Ë«ÇúÏßEµÄÀëÐÄÂÊΪ³£Êý£»(4·Ö)

(3)Á¬½ÓF1MÓëË«ÇúÏßE½»ÓÚµãA£¬ÊÇ·ñ´æÔÚ³£Êýºã³ÉÁ¢£¬Èô´æÔÚÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®(5·Ö)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º½­ËÕÊ¡³£Öݸ߼¶ÖÐѧ2007¡«2008ѧÄêµÚÈý´Î½×¶Î½ÌѧÖÊÁ¿µ÷ÑиßÈýÊýѧ(ÎÄ¿Æ) ÌâÐÍ£º044

ÈçͼF1(£­c£¬0)£¬F2(c£¬0)Ϊ˫ÇúÏßEµÄÁ½½¹µã£¬ÒÔF1F2Ϊֱ¾¶µÄÔ²OÓëË«ÇúÏßE½»ÓÚM¡¢N¡¢M1¡¢N1£¬BÊÇÔ²OÓëyÖáµÄ½»µã£¬Á¬½ÓMM1ÓëOB½»ÓÚH£¬ÇÒHÊÇOBµÄÖе㣬

(1)µ±c£½1ʱ£¬ÇóË«ÇúÏßEµÄ·½³Ì£»

(2)ÊÔÖ¤£º¶ÔÈÎÒâµÄÕýʵÊýc£¬Ë«ÇúÏßEµÄÀëÐÄÂÊΪ³£Êý£»

(3)Á¬½ÓF1MÓëË«ÇúÏßE½»ÓÚµãA£¬ÊÇ·ñ´æÔÚ³£Êýºã³ÉÁ¢£¬Èô´æÔÚÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º½­ËÕÊ¡³£Öݸ߼¶ÖÐѧ2007¡«2008ѧÄêµÚÈý´Î½×¶Î½ÌѧÖÊÁ¿µ÷ÑиßÈýÊýѧ(Àí¿Æ) ÌâÐÍ£º044

ÈçͼF1(£­c£¬0)£¬F2(c£¬0)Ϊ˫ÇúÏßEµÄÁ½½¹µã£¬ÒÔF1F2Ϊֱ¾¶µÄÔ²OÓëË«ÇúÏßE½»ÓÚM¡¢N¡¢M1¡¢N1£¬BÊÇÔ²OÓëyÖáµÄ½»µã£¬Á¬½ÓMM1ÓëOB½»ÓÚH£¬ÇÒHÊÇOBµÄÖе㣬

(1)µ±c£½1ʱ£¬ÇóË«ÇúÏßEµÄ·½³Ì£»

(2)ÊÔÖ¤£º¶ÔÈÎÒâµÄÕýʵÊýc£¬Ë«ÇúÏßEµÄÀëÐÄÂÊΪ³£Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸