精英家教网 > 高中数学 > 题目详情
如图,已知,且(G为动点).
(1)建立适当的平面直角坐标系,写出点P的轨迹方程;
(2)若点P的轨迹上存在两个不同的点A,B,且线段AB的中垂线与EF(或EF的延长线)相交于一点C,求证:
(3)若且点P的轨迹上存在点Q使得,求点P的轨迹的离心率e的取值范围.

【答案】分析:(1)以EF所在的直线为x轴,EF的中垂线为y轴,建立平面直角坐标系,利用向量的数量积可得==2a,从而可得点P的轨迹是以E、F为焦点,长轴长为2a的椭圆,即可求轨迹方程;
(2)设出C的坐标,确定横坐标的范围,即可证得结论;
(3)设OQ所在直线为所在直线,与椭圆方程联立,利用,即可求点P的轨迹的离心率e的取值范围.
解答:(1)解:如图,以EF所在的直线为x轴,EF的中垂线为y轴,建立平面直角坐标系.(1分)
由题设2==0,
=,而==2a,
∴点P的轨迹是以E、F为焦点,长轴长为2a的椭圆,
故点P的轨迹方程是:.(4分)
(2)证明:如图,设A(x1,y1),B (x2,y2),C (x,0),
∴x1≠x2,且=,即(x1-x2+=(x2-x2+.①
又A、B在轨迹上,∴
=,(6分)
代入①整理得:2(x2-x1)•x=),(8分)
∵x1≠x2,∴x=.(8分)
∵-a≤x1≤a,-a≤x2≤a,∴-2a≤x1+x2≤2a.
∵x1≠x2,∴-2a<x1+x2<2a,
,即.(9分)
(3)解:由,即点M为椭圆的右顶点,由知直线OQ斜率必存在,
设OQ所在直线为所在直线为y=kx,
,解得(其中b2=a2-c2)     (11分)


化简得a=(1+k2)•,(12分)
∴a2k2+b2=b2(1+k22
∴a2=2b2+b2k2≥2b2=2(a2-c2),
∴a2≤2c2,即
故离心率e的取值范围是[,1)(14分)
点评:本题考查轨迹方程,考查向量知识的运用,考查椭圆的几何性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆C的中心在原点,其一个焦点与抛物线y2=4
6
x
的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A、B两点,连MA、MB.
(1)求椭圆C的方程.
(2)当MA、MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知:ABCD是矩形,AB=1,BC=2,PD⊥平面ABCD,且PD=3.
(1)求四棱锥P-ABCD的体积;
(2)求直线PB与平面ABCD所成角的大小;
(3)求异面直线PB与AC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆G:x2+y2-2x-
2
y=0
经过椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(ma)且倾斜角为
5
6
π
的直线l交椭圆于C,D两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若
FC
FD
<0
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-A1B1C1D1中,AB=3,AD=AA1=2,点O是线段BC1的中点,点M是OD的中点,点E是线段AB上一点,AE>BE,且A1E⊥OE.
①求AE的长;
②求二面角A1-DE-C的正切值;
③求三棱锥M-A1OE的体积.

查看答案和解析>>

同步练习册答案