(本题满分为12分)
在四棱锥
中,
底面
,
,
,
,
,
是
的中点.![]()
(I)证明:
;
(II)证明:
平面
;
(III)求二面角
的余弦值.
科目:高中数学 来源: 题型:解答题
已知四棱柱
的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,
,
E是侧棱AA1的中点,求![]()
(1)求异面直线
与B1E所成角的大小;
(2)求四面体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形
与梯形
所在的平面互相垂直,
,
∥
,
,点
在线段
上.![]()
(I)当点
为
中点时,求证:
∥平面
;
(II)当平面
与平面
所成锐二面角的余弦值为
时,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题13分)如图1,在三棱锥P—ABC中,
平面ABC,
,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。![]()
(1)证明:
平面PBC;
(2)求三棱锥D—ABC的体积;
(3)在
的平分线上确定一点Q,使得
平面ABD,并求此时PQ的长。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△BCD中,∠BCD=
,BC=CD=1,AB⊥平面BCD,∠ADB=
,E、F分别是AC、AD上的动点,且![]()
![]()
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图4,在三棱柱
中,△
是边长为
的等边三角形,
平面
,
,
分别是
,
的中点. ![]()
(1)求证:
∥平面
;
(2)若
为
上的动点,当
与平面
所成最大角的正切值为
时,
求平面
与平面
所成二面角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱锥P-ABC中,PC
平面ABC,PC=AC=2, AB=BC,D是PB上一点,且CD
平面PAB![]()
(1)求证:AB
平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)如图,四边形ABCD是正方形,O是正方形的中心,PO
底面ABCD,E是PC的中点.![]()
求证:(1) PA∥平面BDE .
(2)平面PAC
平面BDE .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分) 如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,
且∠A1AD=∠A1AB=60°。![]()
①求证四棱锥 A1-ABCD为正四棱锥;
②求侧棱AA1到截面B1BDD1的距离;
③求侧面A1ABB1与截面B1BDD1的锐二面角大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com