精英家教网 > 高中数学 > 题目详情

已知两点,点是圆上任意一点,则面积的最小值是

[  ]

A.

B.

C.

D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M:(x+
3
2
x)2+y2=
9r2
4
,点N(3r,0),其中r>0,设P是圆上任一点,线段PN上的点Q满足
PQ
QN
=
1
2

(1)求点Q的轨迹方程;
(2)若点Q对应曲线与x轴两交点为A,B,点R是该曲线上一动点,曲线在R点处的切线与在A,B两点处的切线分别交于C,D两点,求AD与BC交点S的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心是坐标原点O,焦点在x轴上,离心率为
2
2
,又椭圆上任一点到两焦点的距离和为2
2
,过点M(0,-
1
3
)与x轴不垂直的直线l交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆一模)已知圆C的方程为x2+y2+2x-7=0,圆心C关于原点对称的点为A,P是圆上任一点,线段AP的垂直平分线l交PC于点Q.
(1)当点P在圆上运动时,求点Q的轨迹L的方程;
(2)过点B(1,
12
)能否作出直线l2,使l2与轨迹L交于M、N两点,且点B是线段MN的中点,若这样的直线l2存在,请求出它的方程和M、N两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(-1,0)、B(0,2),点P是圆(x-1)2+y2=1上任一点,则△PAB面积的最大值是(    )

A.2               B.2+                C.                  D.1+

查看答案和解析>>

科目:高中数学 来源:2013年湖北新洲、红安、麻城一中高三上学期期末考文科数学试卷(解析版) 题型:解答题

 (本小题满分14分)

已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.

(1)求椭圆的方程;

(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案