精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)证明:AC⊥BC1
(2)求二面角C1-AB-C的余弦值大小.
分析:(1)根据AC,BC,CC1两两垂直,建立如图以C为坐标原点,建立空间直角坐标系C-xyz,写出要用的点的坐标,根据两个向量的数量级等于0,证出两条线段垂直.
(2)根据所给的两个平面的法向量一个可以直接看出另一个设出根据数量级等于0,求出结果,根据两个平面的法向量所成的角求出两个平面所成的角.
解答:解∵直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4,AB=5,
∴AC,BC,CC1两两垂直.
如图以C为坐标原点,建立空间直角坐标系C-xyz,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4). …(2分)
证明:(1)∵
AC
=(-3,0,0),
BC1
=(0,-4,4),
AC
BC1
=0,
故AC⊥BC1…(4分)
解:(2)平面ABC的一个法向量为
m
=(0,0,1),
设平面C1AB的一个法向量为
n
=(x,y,z),
AC1
=(-3,0,4),
AB
=(-3,4,0),
n
AC1
=0
n
AB 
=0
得:
-3x+4z=0
-3x+4y=0
…(6分)
令x=4,则z=3,y=3则
n
=(4,3,3).…(7分)
故cos<
m
n
>=
3
34
=
3
34
34

所求二面角的大小为  arccos
3
34
34
点评:本题考查直线与平面平行的判断,本题的关键是在平面上找出与直线平行的直线,根据有中点找中点的方法来解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案