精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD为矩形,PD⊥平面ABCD,PD=DC=2,BC=
2
,E是PC的中点.
(Ⅰ)证明:PA∥平面EDB;
(Ⅱ)求异面直线AD与BE所成角的大小.
分析:(Ⅰ)利用线面平行的判定定理证明PA∥平面EDB.
(Ⅱ)利用AD∥BC,将异面直线AD与BE所成的角,转化为平面角.
解答:证明:(Ⅰ)连接AC,设AC∩BD=O,连接EO,
∵四边形ABCD为矩形,∴O为AC的中点.
∴OE为△PAC的中位线.
∴PA∥OE,而OE?平面EDB,PA?平面EBD,
∴PA∥平面EDB.…(6分)
(Ⅱ)∵AD∥BC,∴∠CBE就是异面直线AD与BE所成的角或补角.…(8分)
∵PD⊥平面ABCD,BC?平面ABCD,∴BC⊥PD.
又四边形ABCD为矩形,∴BC⊥DC.又因为PD∩DC=D,
所以BC⊥平面PDC.
在Rt△BCE中BC=
2
,EC═
1
2
PC=
2
,∴∠CBE=
π
4

即异面直线AD 与BE所成角大小为
π
4
.                    …(12分)
点评:本题主要考查线面平行的判定,以及异面直线所成角的大小,要求熟练掌握空间直线和平面平行或垂直的位置关系的判定定理和性质定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案