【题目】设有关于x的一元二次方程
.
(1)若a是从0、1、2、3四个数中任取的一个数,是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率.
(2)若a是从区间
内任取的一个数,
,求上述方程没有实根的概率.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,离心率为
.设过点
的直线
与椭圆
相交于不同两点
,
周长为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点
,证明:当直线
变化时,总有TA与
的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为
,
.
(1)求直线
与圆
相切的概率;
(2)将
,
,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着国家综合国力的提升和科技的进步,截至2018年底,中国铁路运营里程达13,2万千米,这个数字比1949年增长了5倍;高铁运营里程突破2.9万千米,占世界高铁运营里程的60%以上,居世界第一位下表截取了2012--2016年中国高铁密度的发展情况(单位:千米/万平方千米).
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
高铁密度 | 9.75 | 11.49 | 17.14 | 20.66 | 22.92 |
已知高铁密度y与年份代码x之间满足关系式
(
为大于0的常数)若对
两边取自然对数,得到
,可以发现
与
线性相关.
(1)根据所给数据,求y关于x的回归方程(
保留到小数点后一位);
(2)利用(1)的结论,预测到哪一年高铁密度会超过30千米/平方千米.
参考公式设具有线性相关系的两个变量
的一组数据为
,
则回归方程
的系数:
,
.
参考数据:
,
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平行四边形
中,
,
,
,
是线段
的中点,现沿
进行翻折,使得
与
重合,得到如图所示的四棱锥
.
![]()
(1)证明:
平面
;
(2)若
是等边三角形,求平面
和平面
所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长均相等的正三棱柱
中,
为
的中点,
在
上,且
,则下述结论:①
;②
;③平面
平面
:④异面直线
与
所成角为
其中正确命题的个数为( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋中装有
个白球和
个黑球,下列事件中,是独立事件的是( )
A.第一次摸出的是白球与第一次摸出的是黑球
B.摸出后放回,第一次摸出的是白球,第二次摸出的是黑球
C.摸出后不放回,第一次摸出的是白球,第二次摸出的是黑球
D.一次摸两个球,共摸两次,第一次摸出颜色相同的球与第一次摸出颜色不同的球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年诺贝尔奖陆续揭晓,北京时间10月2日17:30首先公布了生理学和医学奖,获奖者分别是三位美国科学家霍尔(Jeffrey C. Hall)、罗斯巴什(Michael Rosbash)和杨(Michael W. Ymmg),以表彰他们“发现控制生理节律的分子机制”.通过他们的研究成果发现,人类每天睡眠时间在7-9小时为最佳状态.从某大学随机挑选了100名学生(男生、女生各50名)做睡眠时间统计调查,调查结果如下:
睡眠时间(小时) |
|
|
|
|
|
|
|
男生 | 5 | 6 | 12 | 12 | 8 | 5 | 2 |
女生 | 0 | 2 | 6 | 18 | 12 | 10 | 2 |
请根据上面表格回答下列问题:
(1)请分别估计出该校男生和女生的平均睡眠时间;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com